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Resumo

O objetivo desta tese é projetar um Sistema de Determinação e Controle de Atitude (ADCS) capaz

de atender aos requisitos de missão do ORCASat, um CubeSat 2U: Capacidade de desacelerar o

satélite de velocidades angulares iniciais elevadas; Garantir um erro entre a atitude real e a desejada

inferior a 10˝ ; E garantir um erro de estimação de atitude inferior a 2˝ .

O controlo ativo do ADCS é feito através de atuadores eletromagnéticos, também denominados

magnetorquers, enquanto um volante de inércia, também conhecido como momentum wheel, assegura

a estabilização passiva da atitude. Quatro algoritmos diferentes de controlo de atitude - Constant Gain

Controller (CGC), Finite Horizon Controller (FHC), Infinite Horizon Controller (IHC) e Sliding Mode

Controller (SMC) - foram testados e comparados em termos de eficiência e precisão. O algoritmo com

melhor desempenho foi depois selecionado e analisado em diferentes cenários, incluindo incertezas de

modelo como a incerteza da matriz de inércia e a degradação do desempenho do volante de inércia.

Por forma a desacelerar o satélite, uma versão melhorada do controlador B-dot foi implementada e o

seu desempenho foi testado em diferentes condições.

O satélite tem como sensores de atitude quatro sensores solares, um magnetómetro e um giroscópio.

O Quaternion Estimator (QUEST) foi implementado por forma a inicializar o principal estimador de at-

itude, o Multiplicative Extended Kalman Filter (MEKF). Um filtro para a calibração em tempo real do

magnetómetro, o Magnetometer Calibration Extended Kalman Filter (MCEKF), foi estudado e imple-

mentado como uma tentativa de melhorar o desempenho do MEKF. Diferentes casos foram criados de

forma a poder analisar o desempenho destes algoritmos.

Todas as simulações foram realizadas num ambiente realista desenvolvido em Matlab/Simulink. Os

resultados das simulações realizadas mostraram que o ADCS proposto é capaz de satisfazer com êxito

os requisitos de missão estabelecidos, mesmo com a existência de incertezas de modelo.

Palavras-chave: ADCS, CubeSat, estimação de atitude, controlo de atitude, calibração de

magnetómetro, atuador eletromagnético
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Abstract

The goal of this thesis is to design an Attitude Determination and Control System (ADCS) capable of

achieving the mission requirements of the ORCASat, a 2U CubeSat: Ability to detumble the satellite from

high initial angular velocities; Guarantee a pointing error smaller than 10˝ ; And guarantee an attitude

estimation error smaller than 2˝ .

The active ADCS control is provided by magnetorquers while a momentum wheel is used for passive

attitude stabilization. Four different attitude control algorithms – Constant Gain Controller (CGC), Finite

Horizon Controller (FHC), Infinite Horizon Controller (IHC), and Sliding Mode Controller (SMC) - were

tested and compared in terms of efficiency and pointing accuracy. The best performing algorithm was

selected, and its performance was analyzed under different scenarios including model uncertainties

such as the inertia matrix uncertainty and the momentum wheel performance degradation. In order to

detumble the satellite, a modified B-dot controller was implemented, and its performance was tested

under different conditions.

The ORCASat’s attitude sensor suite includes four sun sensors, a magnetometer, and a gyroscope.

The Quaternion Estimator (QUEST) algorithm was implemented to initialize the main attitude estima-

tor, the Multiplicative Extended Kalman Filter (MEKF). A real-time magnetometer calibration filter, the

Magnetometer Calibration Extended Kalman Filter (MCEKF), was implemented and studied as an at-

tempt to improve the performance of the MEKF. Different cases were devised to analyze the perfor-

mance of these algorithms.

All the simulations were performed under a realistic Matlab/Simulink environment. The different sim-

ulations showed that the proposed ADCS could fulfill the mission requirements, even with the existence

of model uncertainties.

Keywords: ADCS, CubeSat, attitude determination, attitude control, magnetometer calibration,

magnetorquer
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List of Symbols

The next list describes several symbols that will be later used within the body of the document.

Vectors and matrices are written in a boldface type. Matrices, however, are displayed in uppercase,

while vectors are usually displayed in lowercase. Vectors with dimensions 3 ˆ 1 have an arrow sign

on top. Matrices and vectors related to the control algorithms are written in italic type, while matrices

and vectors related to attitude estimation algorithms are written in upright type. Scalars are shown in a

lightface type and can be either lowercase or uppercase. Roman and Greek symbols bear no special

distinction.

Reference frames

B “ tb̂1, b̂2, b̂3u Spacecraft body frame.

E “ tε̂1, ε̂2, ε̂3u Earth-Centered/Earth-Fixed reference frame.

I “ t̂i1, î2, î3u Earth-Centered Inertial reference frame.

O “ tô1, ô2, ô3u Local-Vertical/Local-Horizontal reference frame.

Functions and Operators

adjp˝q Adjoint matrix operator.

blkdiagp˝q Block diagonal matrix.

r˝ˆs Cross product matrix operator.

Jp˝q Cost function.

˝˚ Conjugate.

δpt´ τq Dirac delta function.

δkj Kronecker delta function.

detp˝q Determinant.

diagp˝q Diagonal matrix.

9̋ Derivative with respect to time.
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:̋ Second derivative with respect to time.

ˆ̋ Estimated value.

Et˝u Expected value.

∇˝ Gradient operator.

Hp˝q Heaviside function.

INTp˝q Integer operator.

" Much greater than.

modt˝, ˝u Modulo operator.

N pµ,Qq Normal distribution with mean µ and covariance Q.

‖˝‖ Norm operator.

d Quaternion product.

b Quaternion product.

signp˝q Sign function.

trp˝q Trace.

Greek symbols

∆~β Gyroscope bias error vector.

~β Gyroscope bias vector.

∆~ω Error angular velocity vector.

ε State error vector.

λ Sliding condition gain of the Sliding Mode Controller.

µC Earth’s standard gravitational parameter.

ω̄ Measured angular velocity.

δ~ω Small perturbation of the angular velocity ~ωB{OB from the reference angular velocity ~ωB{OBref
.

ω0 Orbital rate.

~ω Spacecraft inertial angular velocity - shorthand for ~ωB{I .

~ωsB Angular velocity of the momentum wheel about its spin axis with respect to the spacecraft’s body.

~ωB{I Angular velocity of frame B with respect to frame I.

~ωB{O Angular velocity of frame B with respect to frame O.

xx



~ωi{B Angular velocity of the i’th rigid body relatively to the body frame.

~ωi{I Inertial angular velocity of the i’th rigid body.

~ωO{I Angular velocity of frame O with respect to frame I.

~ω0 Initial angular velocity.

~ωe Error angular velocity - short for ~ωB{OO .

~ωC Earth’s angular velocity vector in frame I coordinates.

Φ Error-state transition matrix.

Ψ State transition matrix.

ρ Atmospheric density.

Σ Covariance matrix of the magnetometer measurement noise.

σ Standard Deviation.

σiabs Absorption coefficient of the i’th panel.

σidiff Diffuse reflection coefficient of the i’th panel.

σispec Specular reflection coefficient of the i’th panel.

τ Shorthand for ~τ c.

~τ ‖
eq Component of ~τ eq parallel to ~s.

~τKeq Component of ~τ eq perpendicular to ~s.

~τ c Torque applied to the system about its center of mass c.

~τ perturb Net torque due to environmental perturbations about the spacecraft’s center of mass.

~τ des Desired control torque.

~τ eq Equivalent control torque.

δ~θ Attitude quaternion small angle parametrization vector.

θ Euler rotation angle.

θGMST Greenwich Mean Sidereal Time angle.
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Chapter 1

Introduction

Satellites are usually divided into classes by their weight. Figure 1.1 shows the typical classification

of the different satellite classes in an intuitive way.

Figure 1.1: Satellite classification according to their weight [1].

A particular class of satellites, the CubeSat has been growing continuously over the years. The

global CubeSat market is projected to grow from USD 152 million in 2018 to USD 375 million by 2023

[2] and more than 1200 CubeSats have been launched as of January 2020 [3].

A CubeSat is a square-shaped miniature satellite built to standard dimensions (Units or ”U”) of

10cmˆ 10cmˆ 10cm, with a mass of up to 1.33kg per U [1]. A CubeSat can be used alone (1U) or

in groups of multiple units, originating 2U, 3U, 6U, up to a maximum 24U. The CubeSat Project1 began

in 1999 as a collaborative effort between Jordi Puig-Suari, a professor at California Polytechnic State

1http://www.cubesat.org/
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University (Cal Poly), and Bob Twiggs, a professor at Stanford University’s Space Systems Development

Laboratory (SSDL), to provide a standard for designing satellites in order to reduce cost and develop-

ment time, increase accessibility to space, and to provide the ability to sustain frequent launches [4].

Although CubeSats were initially developed as an educational tool, they are increasingly being put

to active use in orbit for technology demonstration, scientific studies, and even commercial purposes.

Figure 1.2 provides a synthesis of what is a CubeSat, its advantages and missions.

The small size of these satellites presents some challenges for the design of an Attitude Determina-

tion and Control System (ADCS) since these satellites are very limited not only in terms of mass and

volume but they must also obey strict power and cost limitations. The first CubeSats had a relatively sim-

ple ADCS making use of magnetometers, photodiodes, and magnetorquers or gravity gradient booms

as basic attitude sensors and actuators. With the development of CMOS sun sensors and miniaturized

star trackers and reaction wheels, more complex ADCS started to emerge enabling a more variety of

CubeSats missions which require for instance accurate attitude knowledge and full 3-axis control [5].

This thesis addresses some of the challenges faced while designing the ADCS of a CubeSat and

provides and evaluates the efficiency of a fully conceptualized ADCS under the framework of the Optical

and Radio Calibration Satellite (ORCASat) project developed at the Centre for Aerospace Research

(CfAR) at University of Victoria (UVic). The ADCS of the ORCASat features a sensor suite composed

of a three-axis digital magnetometer and gyroscope Inertial Measurement Unit (IMU), four digital sun

sensors, and a Global Navigation Satellite System (GNSS) receiver. The active ADCS control is provided

by three orthogonal magnetorquers while a momentum wheel is used for passive attitude stabilization.

Figure 1.2: CubeSat info-graphic [1].
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1.1 Motivation

The ORCASat project2 is a multi-payload, collaborative project between teams at the University

of British Columbia, Simon Fraser University, the University of Victoria (British Columbia, Canada),

and Instituto Superior Técnico (Lisbon, Portugal) [6]. This project is part of the Canadian CubeSat

Project (CCP)3 which offers post-secondary institutions (colleges and universities) from each province

and territory in Canada the opportunity for their students to take part in a real space mission by design-

ing, building, launching, and operating their own CubeSat. This is thought to help to increase students’

interest in science, technology, engineering and math as well as develop students’ expertise in space

domains and advance Canadian space science and technology. This project will be guided by Canadian

Space Agency (CSA) experts and representatives from the Canadian space industry which will help the

teams to optimize the success of each mission.

The ORCASat is scheduled for launch from the International Space Station (ISS) in the final quarter

of 2021. The purpose of the ORCASat will be to provide a reference light source from orbit to calibrate

ground-based optical observatories that are used to study the expansion rate of the universe and the

effects of dark energy. Once in orbit, ORCASat will flash a laser light source while traveling across the

sky above the observatory. On-board sensors will measure and record the actual output of the light

source while at the same time an observatory on the ground will take its own readings. The values

recorded on-board the satellite will then be transmitted to the observatory where astronomers will com-

pare the actual and perceived emission helping to calibrate the observatories [7]. Additionally, its radio

source will be used to calibrate the Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio

observatory conceived to form a 3-dimensional map of hydrogen density, which will be used to measure

the expansion history of the universe [8]. The CubeSat also provides a store and forward repeater, as

service to the amateur radio community.

1.2 Topic Overview

The ADCS of a spacecraft is the subsystem responsible for determining the orientation of the space-

craft and then controlling it so that the spacecraft points in some desired direction. Authors such as

F. Landis Markley, John L. Crassidis, James R. Wertz, and Bong Wie have published many articles

exploring this subject which can be found compiled in references [9–12].

The first spacecrafts starting with the Sputnik in 1957 had no ADCS, others made use of passive

stabilization methods, while infrequent control torques to be applied by active mechanisms were com-

puted on the ground and telemetered to the spacecraft. Most modern-day missions and spacecrafts are

however different, having specific pointing requirements [9].

The first 3-axis attitude determination system was invented by Harold Black for the Transit satellite

system and was published in 1964 [13]. This algorithm made use of two and only two vector observa-

tions and came to be known as the Triaxial Attitude Determination (TRIAD) algorithm [14]. One year

2https://www.orcasat.ca/
3https://www.asc-csa.gc.ca/eng/satellites/cubesat/default.asp
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later Grace Wahba published her famous attitude determination problem involving any number of vec-

tor observations [15]. The first successful application of Wahba’s problem was the q-method algorithm

devised by Paul Davenport as reported in 1977 in reference [16] by using the quaternion parametriza-

tion for the attitude. This algorithm still presented some challenges for the computing power of the

computers at that time due to its necessity to solve an eigenvalue/eigenvector problem. In 1978 the

Quaternion Estimator (QUEST) algorithm developed by Shuster [17] was presented as an alternative

to the q-method which avoided the eigenvalue/eigenvector decomposition being less computationally

expensive. Since then many other solutions for Wahba’s problem have been developed. Reference [18]

provides a summary of all those methods as well as comparing the performance between them.

The attitude determination methods mention above belong to the class of static attitude determi-

nation methods which combines measurements taken at the same time. A different class of attitude

determination methods is the recursive attitude determination methods which make use of a model of

the dynamics of the spacecraft. The latter methods have the advantage of providing more accurate solu-

tions and also providing attitude estimates when less than two independent measurements are available.

One of the most popular recursive algorithms for attitude estimation is the Extended Kalman Filter (EKF),

being considered the workhorse of real-time spacecraft attitude estimation [19]. The first publication of

the use of the EKF for attitude estimation was done in 1970 by James Farrell [20] where the Euler angles

were used for the attitude parametrization. These filters, however, started only to be implemented in the

late 1970s, due to their very high computational burden [21]. Reference [19] provides a broad view of

current attitude estimation methods.

According to [19], most applications in spacecrafts use the EKF, specially in the form known as the

Multiplicative Extended Kalman Filter (MEKF), as the method of choice for solving the attitude determi-

nation problem [22–29]. In some cases, this filter is coupled with a static attitude determination methods,

such as the Singular Value Decomposition (SVD) algorithm or the QUEST algorithm, for sanity check

and for providing an initial state estimation for the recursive estimation method [26–28].

Although the history of attitude determination has been relatively well documented, the history of

attitude control is less known mainly because it was classified secret in the early days of spacecraft

mission design [9]. Similarly to the estimation problem, the parametrization of choice for the control

problem is the quaternion parametrization. One of the first publications using the quaternion as attitude

parametrization was produced by Bong Wie and Peter Barba in [30] which essentially uses a classic

Proportional-Derivative (PD) controller which is proved stable by using a Lyapunov analysis. Since the

first publications, control theory has continued to evolve, producing a vast stream of theoretically-based

publications that continues to this day. Reference [9] provides a good synopsis of the history of attitude

control as well as many different control algorithms.

Currently, spacecraft attitude control methods can be divided into two classes, passive and active

control methods. Passive control methods use the natural spacecraft dynamics to satisfy their pointing

requirements, these include momentum bias techniques using spin stabilization or momentum wheels,

gravity-gradient stabilization, and permanent magnets stabilization. On the other hand, active control

schemes rely on actuators such as thrusters, magnetorquers, and reaction wheels, among others, to
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accomplish the spacecraft’s pointing requirements. Active control schemes allow for missions that have

much more demanding pointing requirements including three-axis stabilization. Most applications in

CubeSats use magnetorquers as main actuators due to its simplicity, low cost, and the fact that they

can be simultaneously used for detumbling and 3-axis stabilization [31]. These actuators are often used

together with passive stabilization methods such as the use of a momentum wheel or gravity gradient

boom [27, 32–37]. The magnetic spacecraft control problem is significantly different from the conven-

tional attitude regulation one since due to the magnetic field properties, it is not possible by means

of magnetic actuators to provide three independent control torques at each time instant [38]. A large

amount of literature has been developed solely to address this particular problem such as in references

[39] and [40]. References [38, 41, 42] study the 3-axis attitude control using only magnetorquers. Ex-

amples of 3-axis attitude control using only magnetorquers can be seen in references [28, 35, 43–45].

Advances in miniaturization allowed CubeSats to be equipped with reaction wheels as primary actua-

tors, while using magnetorquers for momentum damping, for better pointing accuracy [22, 25, 29, 46].

The miniaturization advances also allowed for more sophisticated sensors to be present in CubeSats,

such as miniaturized star trackers [47] which reduce the estimation error and consequently improve the

pointing performance.

1.3 Objectives

The objective of this thesis comes from the need to have a robust, simple, and cost-effective ADCS

for the ORCASat. The three mission requirements for the ADCS of the ORCASat are:

• Ability to detumble the satellite;

• Guarantee an attitude estimation error smaller than 2˝ ;

• Guarantee a pointing error smaller than 10˝ .

These requirements must be guaranteed for the full orbit independently if the CubeSat is in eclipse

or in sunlit. This thesis had contributions from previous works done at CfAR such as [48] and [49]

but includes an improved attitude estimation algorithm and the study and testing of new and improved

control algorithms. The goals for this master’s thesis are summarized as follows:

• Present a functional ADCS prototype clearly separated from the Model-In-the-loop (MIL) frame-

work from [48];

• Investigate and study the performance of different control algorithms;

• Investigate and study the performance of the estimation algorithm implemented in [48] and imple-

ment the necessary changes to meet the requirements;

• Define the initializing sequence of the ADCS and its operating modes;

• Improve the environment simulator using the current Computer-Aided Design (CAD) model;

• Demonstrate that the designed ADCS can meet the mission requirements.
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1.4 Thesis Outline

This thesis is organized as follows:

• Chapter 2 includes a summary of the required background concepts for the research presented in

this document, such as different attitude parametrizations, the frames of reference that are used

throughout the work as well as some concepts about the stability of nonlinear systems.

• Chapter 3 describes the spacecraft mechanics, which includes the orbital motion of the space-

craft, the attitude dynamics and kinematics as well as the different perturbation forces and torques

applied to the spacecraft. This chapter also describes the linearized model for the dynamics and

kinematics of the spacecraft, which will be used for the synthesis of the Linear Quadratic Regula-

tor (LQR) controllers.

• Chapter 4 presents the theory behind the different attitude determination/estimation algorithms

implemented in the ADCS as well as a real-time magnetometer calibration filter based on the

Extended Kalman Filter.

• Chapter 5 provides the theory behind the different magnetic control algorithms studied. This

includes both the detumbling controller and the nadir-pointing controllers.

• Chapter 6 provides an overview of the implementation and a description of the functioning of

the simulator developed in Matlab/Simulink to test the different algorithms and to simulate the

satellite, including the different environmental models used, the hardware models and the selected

hardware for the ORCASat and the ADCS implementation.

• Chapter 7 provides the simulation results. A comparison between the performance of the different

nadir-pointing control algorithms studied is done as well as the selection of the nominal controller

for the ORCASat. The validation of the performance of the selected nadir-pointing controller, of the

detumbling controller and the different estimation filters under different scenarios is also presented.

• Chapter 8 summarizes the work performed in this thesis with a conclusion and presents some

recommendations for future work.
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Chapter 2

Theoretical Background

This chapter will start, in Section 2.1, with the definition of the reference frames used throughout this

work which are useful in the context of the subject of attitude determination and control, as well as the

transformations used to switch between these reference frames. It then follows, in Section 2.2, present-

ing the different attitude parameterizations used, i.e., the different ways to mathematically represent the

orientation of a body, and lastly, in Section 2.3, the concepts associated with the stability of nonlinear

systems are described.

2.1 Reference Frames

A reference frame consists of a coordinate system that is specified by the location of its origin and the

orientation of its coordinate axes [9]. In order to apply the different equations that describe the motion

of the spacecraft in space, and to be able to determine its position and attitude, one needs to define a

reference frame.

Ecliptic

Equator

Orbital
Plane

Direction of
MovementNorth Pole

Prime Meridian

Figure 2.1: Representation of the different reference
frames. Figure 2.2: Spacecraft body frame.
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2.1.1 Earth-Centered Inertial (ECI) Frame

The ECI frame, here designated by I, is an approximate inertial frame whose origin is in the center

of mass of the Earth. It is an approximate inertial frame because it has a linear acceleration due to

the movement of the Earth around the Sun, but it does not rotate. This frame is denoted by the triad

t̂i1, î2, î3u and is depicted in Figure 2.1. The î3 axis of this frame is aligned with the Earth’s North pole,

and the î1 axis is aligned with the vernal equinox which is the intersection of the Earth’s equatorial plane

with the plane of the apparent path of the Sun in the Earth’s sky (the ecliptic plane) in the direction of

the Sun’s position relative to the Earth in the first day of spring. The î2 axis completes the right-handed

triad.

Due to the Earth’s precession and nutation, neither the intersection between the ecliptic plane and

the Earth’s equatorial plane nor the polar axis are initially fixed, and thus this system is defined by the

mean orientation of those axes at a fixed epoch. The epoch used in this work is the current standard

epoch (at the time of writing), the J2000.

2.1.2 Earth-Centered/Earth-Fixed (ECEF) Frame

Similarly to the ECI frame, the ECEF frame, designated in this work by E, has its origin fixed in the

center of the Earth, but unlike the previous frame, the ECEF frame rotates with the Earth. This frame is

denoted by tε̂1, ε̂2, ε̂3u. The ε̂3 axis is aligned with the north pole, being ε̂3 ” î3, and the ε̂1 axis points

in the direction of Earth’s prime meridian. The ε̂2 axis completes the right-handed triad.

The rotation angle θGMST in Figure 2.1 is the Greenwich Mean Sidereal Time (GMST). With this

angle, it is possible to write the transformation of a vector ~v from its representation in the ECI frame to

the ECEF frame. This transformation is given by

~vE “ AE
I ~vI “

»

—

—

—

–

cos θGMST sin θGMST 0

´ sin θGMST cos θGMST 0

0 0 1

fi

ffi

ffi

ffi

fl

~vI (2.1)

where ~vE and ~vI are the representations of the vector ~v in the ECEF frame E and in the ECI frame I

respectively. The θGMST angle is given in degrees by [50]

θGMST “
1

240
modt24110.54841` 8640184.812866T0 ` 0.093104T 2

0´

´ 6.2ˆ 10´6T 3
0 ` 1.002737909350795p3600h` 60m` sq, 86400u (2.2)

where h, m, s are the hours, minutes and seconds given in Universal Time 1 (UT1) and T0 is the number

of Julian centuries elapsed from the epoch J2000 to zero hours of the date in question, and is given by

T0 “
JDpY,M,D, 0, 0, 0q ´ 2451545

36525
(2.3)

where Y is a given year between 1901 and 2099 and M and D are the month and the day of the desired
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date. The Julian date JD is computed by

JDpY,M,D, h,m, sq “ 1721013.5` 367Y ´ INT

"

7

4
Y `

„

INT

ˆ

M ` 9

12

˙*

` INT

ˆ

275M

9

˙

`D`

`
60h`m` s{60˚

1440
(2.4)

where INT means the integer (floor) part and 60˚ denotes using 61s for days with a leap second.

2.1.3 Local-Vertical/Local-Horizontal (LVLH) Frame

The LVLH frame is very useful for Earth pointing spacecrafts. This frame, also known as the orbit

frame, is going to be designated in this work by O “ tô1, ô2, ô3}, and is depicted in Figure 2.1. The

origin of this frame is attached to the spacecraft, the ô3 axis points along the nadir (geocentric) direction,

the ô2 axis points along the negative orbit normal, and the ô1 axis completes the right-handed triad.

In order to transform a vector ~v written in the orbital frame coordinates, ~vO, to its representation in

the ECI frame, ~vI , one can use the following equation,

~vI “ AI
O~vO “

”

ô1I ô2I ô3I

ı

~vO (2.5)

with

ô3I “ ´
~rI
‖~rI‖

(2.6a)

ô2I “ ´
p~rI ˆ ~vIq

‖~rI ˆ ~vI‖
(2.6b)

ô1I “ ô2I ˆ ô3I (2.6c)

where ~rI and ~vI are the position and velocity of the spacecraft in frame I and ô1I ô2I and ô3I are the

representations of the O frame axes in frame I.

2.1.4 Body Frame

The spacecraft body frame B “ tb̂1, b̂2, b̂3u has its origin fixed on the center of mass of the space-

craft, and its axes rotate with the spacecraft. This frame is depicted in Figure 2.2. The body frame of the

ORCASat is oriented so that in nominal mode, the payload is nadir pointing, and under a null pointing

error, frame B is coincident with frame O (Figure 2.1). The b̂3 axis is normal to the large face where the

payload is, pointing in the payload’s direction while the b̂2 axis is normal to the other set of large faces

and, in the absence of pointing error, has the opposite direction of the orbit normal. The b̂1 axis forms

the right-handed system being normal to the set of smaller faces of the CubeSat.
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2.2 Attitude Representations

The attitude of a spacecraft consists of the orientation of the spacecraft relative to a certain ref-

erence frame. This attitude can be represented in different ways. The most commonly used are the

quaternion representation, which makes use of only four parameters, being lowest-dimensional param-

eterization that is free from singularities [51], the Direction Cosine Matrix (DCM) representation which

uses 9 different parameters for representing the attitude, the Euler Angles representation and the Gibbs

vector or Rodrigues Parameter representation which are the lowest-parameter representations, using

only 3 parameters, which makes them have singularities. Due to the non-singularity free nature of the

Euler angles and Gibbs vector attitude representations, they are not going to be used for the attitude

parameterization of the ORCASat and so they will not be presented in the following development. The

advantages and disadvantages of each attitude parameterization are presented in Table 2.1 [11, 52].

Table 2.1: Attitude parameterizations.

Parameterization Advantages Disadvantages

DCM

Uniquely defines the attitude
No singularities
No trigonometric functions
Convenient rule for successive rotations

Inefficient - Six redundant parameters
Difficult to enforce the orthogonality constraint

Quaternions

No singularities
No trigonometric functions
Convenient rule for successive rotations
Only one redundant parameter
Easy to enforce the normalization constraint
Easy to convert into a rotation matrix

Not intuitive
Non-uniqueness

Euler angles Physical interpretation
No redundant parameters

Involve trigonometric functions
They have singularities for some orientations
Not convenient rule for successive rotations

Gibbs Vector
No redundant parameter
No trigonometric functions
Convenient rule for successive rotations

Singularity for 180 degrees rotation

2.2.1 Direction Cosine Matrix (DCM)

The same vector ~v can be represented in different reference frames. By saying for instance that ~vI

is the representation of vector ~v in the inertial frame I and ~vB is the representation of vector ~v in the

body frame B, without loss of generality, these two representations are related by [52]

~vB “ AB
I ~vI (2.7)

where the matrix AB
I , known as DCM or rotation matrix, is a 3 ˆ 3 orthogonal matrix with determinant

`1, meaning that

AB
I

`

AB
I

˘J
“
`

AB
I

˘J
AB
I “ I3 “ AB

I

`

AB
I

˘´1
“
`

AB
I

˘´1
AB
I (2.8)
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where I3 is the 3ˆ3 identity matrix. The property expressed by Equation (2.8) is very important because

it preserves both lengths of vectors and angles between them, independently of the reference frame in

which they are represented, allowing to perform the inner product between the two different vectors in

any frame. If ~vB and ~vI are written as

~vB “

»

—

—

—

–

v1B

v2B

v3B

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

~v ¨ b̂1

~v ¨ b̂2

~v ¨ b̂3

fi

ffi

ffi

ffi

fl

~vI “

»

—

—

—

–

v1I

v2I

v3I

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

~v ¨ î1

~v ¨ î2

~v ¨ î3

fi

ffi

ffi

ffi

fl

(2.9)

where b̂i and îi with i “ 1, 2, 3 are the basis unit vectors of frames B and I respectively, and viB and viI

are the components of the vector ~v in frames B and I respectively, then the DCM AB
I is given by

AB
I “

»

—

—

—

–

b̂1 ¨ î1 b̂1 ¨ î2 b̂1 ¨ î3

b̂2 ¨ î1 b̂2 ¨ î2 b̂2 ¨ î3

b̂3 ¨ î1 b̂3 ¨ î2 b̂3 ¨ î3

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

pb̂1I q
J

pb̂2I q
J

pb̂3I q
J

fi

ffi

ffi

ffi

fl

“

”

î1B î2B î3B

ı

(2.10)

where b̂kI with k “ 1, 2, 3 is the representation of the basis vectors of B in frame I and îkB is the

representation of the basis vectors of I in frame B. The inverse rotation can be written as

~vI “ AI
B~vB “

`

AB
I

˘J
~vB (2.11)

If there are one or more intermediate frames, like for instance frames J and K, then

~vB “ AB
I ~vI “ AB

KAK
J AJ

I ~vI (2.12)

where AJ
I corresponds to the first rotation performed, AK

J to the second and AB
K corresponds to the

third and final rotation performed. In general, the rotations do not commute, which means that the order

of the rotation is important,

AB
KAK

I ‰ AK
I AB

K (2.13)

2.2.2 Quaternion

The quaternions were introduced by Hamilton as a result of the searching for hypercomplex numbers

that could be represented by points in three-dimensional space [12]. The quaternions can be defined as

a four-component vector given by,

q “

»

–

~q

q4

fi

fl “

»

—

—

—

—

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.14)
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where ~q is the vector part of the quaternion and q4 is the scalar component of the quaternion. The

quaternions used to parameterize rotations are unit quaternions [9] , i.e.:

qJq “ 1 (2.15)

The vector part of the attitude quaternions and the scalar part can be represented as

~q “ ~e sin

ˆ

θ

2

˙

“

»

—

—

—

–

e1 sin pθ{2q

e2 sin pθ{2q

e3 sin pθ{2q

fi

ffi

ffi

ffi

fl

q4 “ cos

ˆ

θ

2

˙

(2.16)

where ~e “
”

e1 e2 e3

ıJ

is the Euler rotation axis associated to the rotation between two different

frames and θ is the rotation angle about that axis. From here on, whenever the quaternion is mentioned,

it is implied that it is a unit quaternion without any loss of generality.

Quaternion Algebra

In order to apply the quaternions for attitude representation, it is important to understand how the

quaternion algebra works. The most important operations used in this work are represented in this

section and provide a better understanding of the following sections, namely for the attitude kinematics

of the spacecraft. The relations presented here are valid for all quaternions and not only to the attitude

quaternions [9, 12].

The product of two quaternions can be given by two different rules. This product is associative,

distributive but generally not commutative. Having two quaternions, p “
”

~pJ p4

ıJ

and q “
”

~qJ q4

ıJ

,

the product between the two is given by

qb p “

»

–

p4~q` q4~p´ ~qˆ ~p

q4p4 ´ ~q ¨ ~p

fi

fl (2.17)

qd p “

»

–

p4~q` q4~p` ~qˆ ~p

q4p4 ´ ~q ¨ ~p

fi

fl (2.18)

As one can see, the difference between the two formulations is the sign of the cross product between

the vector part of each of the quaternions p and q. The relation between the two formulations is given

by

pb q “ qd p (2.19)

The products of Equations (2.17) and (2.18) can be represented as a matrix multiplication very much

like the cross product operation

qb p “ rqbsp “ pd q (2.20a)

qd p “ rqdsp “ pb q (2.20b)

12



where

rqbs “
”

Ψpqq q
ı

“

»

–

q4I3 ´ r~qˆs ~q

´~qJ q4

fi

fl (2.21)

and

rqds “
”

Ξpqq q
ı

“

»

–

q4I3 ` r~qˆs ~q

´~qJ q4

fi

fl (2.22)

with Ψpqq and Ξpqq 4ˆ 3 matrices given by

Ψpqq “

»

–

q4I3 ´ r~qˆs

´~qJ

fi

fl “

»

—

—

—

—

—

—

–

q4 q3 ´q2

´q3 q4 q1

q2 ´q1 q4

´q1 ´q2 ´q3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.23)

Ξpqq “

»

–

q4I3 ` r~qˆs

´~qJ

fi

fl “

»

—

—

—

—

—

—

–

q4 ´q3 q2

q3 q4 ´q1

´q2 q1 q4

´q1 ´q2 ´q3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.24)

Using Equations (2.23) and (2.24) it is possible to prove that

ΨJpqqq “ ΞJpqqq “ ~0 (2.25)

where ~0 is a 3ˆ 1 vector of zeros. The identity quaternion must obey:

Iq b q “ qb Iq “ Iq d q “ qd Iq “ q (2.26)

being thus defined as

Iq “

»

–

~0

1

fi

fl (2.27)

The conjugate of a quaternion is defined by changing the sign of the vector part of the quaternion:

q˚ “

»

–

~q

q4

fi

fl

˚

“

»

–

´~q

q4

fi

fl (2.28)

The product of the quaternion with its conjugate is then the square of its norm times the identity quater-

nion:

qb q˚ “ q˚ b q “ qd q˚ “ q˚ d q “ ‖q‖2Iq (2.29)

By replacing the conjugate quaternion (Eq. (2.28)) in Equations (2.21) and (2.22), it is easy to see that

rq˚bs “ rqbsJ and rq˚ds “ rqdsJ (2.30)
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The inverse of a quaternion having nonzero norm is defined as

q´1 “
q˚

‖q‖2
(2.31)

so that

qb q´1 “ q´1 b q “ qd q´1 “ q´1 d q “ Iq (2.32)

By applying Equation (2.31) to an attitude quaternion, whose norm is equal to one, one can see that

the inverse of an attitude quaternion is equal to its conjugate quaternion, which is analogous to the fact

that the inverse of a rotation matrix is equal to its transpose (Equation (2.8)). Analogous to the attitude

matrix case, one can think on the conjugate/inverse of the attitude quaternion as the representation of

the inverse rotation.

The multiplication between a 3ˆ 1 vector ~v and a quaternion is done by defining the auxiliary vector

v “

»

–

~v

0

fi

fl. The multiplication is then performed as if it were a multiplication between any two quaternions:

v b q “

»

–

~v

0

fi

flb q “ rvbsq and qb v “ qb

»

–

~v

0

fi

fl “ rqbsv (2.33)

v d q “

»

–

~v

0

fi

fld q “ rvdsq and qd v “ qd

»

–

~v

0

fi

fl “ rqdsv (2.34)

where the products rqbsv and rqdsv can be simplified as

rqbsv “ Ψpqq~v and rqdsv “ Ξpqq~v (2.35)

Quaternion to DCM

The conversion from the attitude quaternion representation to DCM is given by [9]

Apqq “
´

q24 ´ ‖~q‖2
¯

I3 ´ 2q4r~qˆs ` 2~q~qJ “ ΞJpqqΨpqq “

“

»

—

—

—

–

q21 ´ q
2
2 ´ q

2
3 ` q

2
4 2pq1q2 ` q3q4q 2pq1q3 ´ q2q4q

2pq2q1 ´ q3q4q ´q21 ` q
2
2 ´ q

2
3 ` q

2
4 2pq2q3 ` q1q4q

2pq3q1 ` q2q4q 2pq3q2 ´ q1q4q ´q21 ´ q
2
2 ` q

2
3 ` q

2
4

fi

ffi

ffi

ffi

fl

(2.36)

which is a quadratic function of the elements of the quaternion, requiring no trigonometric or other

transcendental functions.

DCM to Quaternion

According to [53], the extraction of an attitude quaternion from a DCM is done by choosing one of the

four different vectors xi “ 4qiq from Equation (2.38) and by normalizing it, obtaining then the desired

attitude quaternion q. Let A denote the DCM to transform into a quaternion, with Aij , i, j “ 1, 2, 3 the
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element of A in the i’th row and j’th column, and trpAq the trace of A. The solution xi to choose from

the set tx1,x2,x3,x4u that minimizes the numerical errors is the one corresponding to the same element

position as the maximum (most positive) element of the set tA11, A22, A33, tr Au. The desired attitude

quaternion q is then given by

q “
xi
‖xi‖

(2.37)

x1pAq “

»

—

—

—

—

—

—

–

1´ trpAq ` 2A11

A12 `A21

A13 `A31

A23 ´A32

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.38a) x2pAq “

»

—

—

—

—

—

—

–

A21 `A12

1´ trpAq ` 2A22

A23 `A32

A31 ´A13

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.38b)

x3pAq “

»

—

—

—

—

—

—

–

A31 `A13

A32 `A23

1´ trpAq ` 2A33

A12 ´A21

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.38c) x4pAq “

»

—

—

—

—

—

—

–

A23 ´A32

A31 ´A13

A12 ´A21

1` trpAq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.38d)

Quaternion Transformation Between Reference Frames

The transformation of a vector ~v written in an arbitrary frame I to an arbitrary frame B can be given

by the double quaternion product qBI bvIb
`

qBI
˘˚ using the results from Equations (2.35), (2.20), (2.30),

(2.22) and (2.36):

~vB “ qBI b vI b
`

qBI
˘˚
“

”

`

qBI
˘˚
d

ı

ΨpqBI q~v “

»

–

ΞJpqBI qΨpq
B
I q~vI

0

fi

fl “

»

–

ApqB
I q~vI

0

fi

fl (2.39)

where ApqBI q ” AB
I . Applying now a second transformation to ~v using qKB gives

~vK “ qKB b vB b
`

qKB
˘˚
“ qKB b

”

qBI b vI b
`

qBI
˘˚
ı

b
`

qKB
˘˚
“

»

–

ApqK
BqApq

B
I q~vI

0

fi

fl (2.40)

where by using the associative property of the quaternion multiplication,

qKB b
”

qBI b vI b
`

qBI
˘˚
ı

b
`

qKB
˘˚
“ pqKB b qBI q b vI b

`

qKB b qBI
˘˚
“

»

–

A
`

qK
B b qB

I

˘

~vI

0

fi

fl (2.41)

proving that

A
`

qK
B b qB

I

˘

“ A
`

qK
B

˘

A
`

qB
I

˘

(2.42)

and thus the quaternion representation of successive transformations is the product of the quaternions

that constitute that transformation, in the same way that the attitude matrix of the combined transfor-

mation is the product of the individual attitude matrices, being the order of the quaternion product b

identical to the order of matrix multiplication [9].
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2.3 Stability of Nonlinear Systems

In this section, the concepts of stability and asymptotic stability as well as the stability analysis of a

nonlinear dynamic system are introduced. These concepts will allow us to evaluate and predict what the

evolution of the nonlinear system will be when driven by the different control laws. The stability theory

presented in this section follows from [12]. Consider the following nonlinear system described by

9x “ fpx, tq fpxe, tq “ 0, @t (2.43)

where x is the system’s state vector and xe is an equilibrium point of the system.

Definition 1 (Lyapunov stability). An isolated equilibrium point xe is Lyapunov stable if for any ε ą 0

there exists a real positive number δpε, t0q such that ‖xpt0q ´ xe‖ ď δ ñ ‖xptq ´ xe‖ ď ε, @t ě t0.

Definition 2 (Local asymptotic stability). An isolated equilibrium point xe is said to be locally asymptoti-

cally stable if it is Lyapunov stable and ‖xpt0q ´ xe‖ ď δ ñ xptq Ñ xe as tÑ8.

Definition 3 (Global asymptotic stability). An equilibrium point xe is said to be global asymptotic stable

if it is Lyapunov stable and xptq Ñ xe as tÑ8 for any initial conditions xpt0q.

Definition 4 (Instability). An equilibrium point is said to be unstable if it is not Lyapunov stable nor

asymptotically stable.

In simple terms, Definition 1 states that if the system starts near an equilibrium point xe, it will

stay near the equilibrium forever, while Definition 2 more strongly states that if the system starts near

an equilibrium point xe, then it will converge to xe and not only stay near it. Definition 3 implies that

a necessary condition for the equilibrium point to be globally asymptotically stable is that it is the only

equilibrium point. Consider now the following scalar function Vpxq, with continuous first partial derivatives

with respect to x, satisfying the following properties in a neighborhood D of the equilibrium point xe

Vpxq ą 0, @x ‰ xe Vpxeq “ 0 (2.44)

Theorem 1 (Lyapunov stability). The solution x “ xe of the system 9x “ fpxq with fpxeq “ 0 is Lyapunov

stable (Definition 1) if 9Vpxq ď 0, @x ‰ xe in D and t.

Theorem 2 (Local asymptotic stability). The solution x “ xe of the system 9x “ fpxq with fpxeq “ 0 is

locally asymptotically stable (Definition 2) if 9Vpxq ă 0 @x ‰ xe in D and t.

Theorem 3 (Global asymptotic stability). The solution x “ xe of the system 9x “ fpxq with fpxeq “ 0 is

globally asymptotically stable (Definition 3) if 9Vpxq ă 0, @x ‰ xe and if in addition there is an entire

state space where Vpxq ą 0, @x ‰ xe, is radially unbounded, i.e., Vpxq Ñ 8 as ‖x‖Ñ8.

Theorem 4 (Instability). The solution x “ xe of the system 9x “ fpxq with fpxeq “ 0 is unstable (Definition

4) if 9Vpxq ą 0, @x ‰ xe, and 9Vpxeq “ 0, @t.

The function Vpxq is called the Lyapunov function. The proper selection of this function will allow us

to prove the nonlinear system stability using theorems 1 through 4.
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Chapter 3

Spacecraft Mechanics

This chapter will be concerned with the laws that describe the motion of the spacecraft under the

influence of a system of forces and torques. First, in Section 3.1, the orbital mechanics as well as

the mathematical model for the gravity force are described. In Section 3.2, the attitude kinematics of

the spacecraft are presented. Then, in Section 3.3, the effect of the forces and torques applied to

the spacecraft are going to be presented for an analysis in terms of attitude dynamics. In Section

3.4, the main external forces and torques which influence the motion of the spacecraft in space are

characterized. Finally, in Section 3.5, a linearized model for the spacecraft’s attitude dynamics and

kinematics is described.

3.1 Orbital Mechanics

The orbit of a spacecraft is defined as its path through space [54]. With the help of the observational

data from the Danish astronomer Tycho Brahe, Johannes Kepler discovered the three laws of planetary

motion. Later these laws were formalized by Isaac Newton which described the motion of two celestial

bodies with masses M and m orbiting their common center of mass by [9]

:~r “ ´
GpM `mq

‖~r‖3
~r (3.1)

where ~r is the relative position of both masses M and m measured in an inertial frame and G is the

universal gravitational constant. Equation (3.1) ignores the non-spherical symmetry of the two bodies,

the perturbations due to other bodies and non-gravitational forces like the air drag and solar radiation

pressure. This special type of orbits is termed as Keplerian orbit. Equation (3.1) can be further simplified

if one considers that M " m which for the case of a spacecraft orbiting the Earth is a valid assumption.

In this way, the center of mass of the system (spacecraft + Earth) is coincident with the center of mass

of the Earth. The motion of the spacecraft is now described about an inertial frame whose origin is

coincident with the Earth’s center of mass, such as the ECI frame from Section 2.1.1. Equation (3.1)
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can thus be written as
:~rI “ ´

µC

‖~rI‖3
~rI (3.2)

where µC “ GMC is the Earth’s standard gravitational parameter, MC is the Earth’s mass, and ~rI is the

position of the spacecraft in the ECI frame I.

Since the orbit being considered for the ORCASat is a Low Earth Orbit (LEO), the effects of the

Earth’s non-spherical mass distribution are one of the major sources of perturbations [11]. A better

approximation for the Earth’s gravity field can be given by the use of spherical harmonics. It can be

proved that the gravity force, and therefore by Newton’s second law, the gravity acceleration :~r, can be

expressed as a gradient of a scalar function U :

:~r “ ´∇U (3.3)

In the ECEF frame (Section 2.1.2), this scalar function, the gravitational potential, can be expressed in

a spherical harmonics expansion by [9]

U “
µC

‖~r‖

#

1`
8
ÿ

n“1

ˆ

RC

‖~r‖

˙n n
ÿ

m“0

Pmn psinλq rC
m
n cos pmφq ` Smn sin pmφqs

+

(3.4)

where RC is the Earth’s mean equatorial radius, λ and φ are respectively the geocentric latitude and

the longitude of the point mass, Pmn is the associate Legendre function of degree n and order m, and

Cmn and Smn are geopotential coefficients which are found by fitting gravity measurement data. The

gravity acceleration from Equation (3.3), which as seen was expressed in the ECEF frame, must now be

transformed to the ECI frame:
:~rI “ ´AI

E∇U (3.5)

where AI
E “

`

AE
I

˘J, with AE
I given by Equation (2.1). Equation (3.5) can be modified to incorporate

the effects due to other perturbative forces acting on the spacecraft as

:~rI “ ´AI
E∇U ` ~a perturbI (3.6)

These perturbative accelerations/forces will be outlined in Section 3.4.

3.2 Attitude Kinematics

In Section 2.2 two different attitude parameterizations were considered. This section will now present

the kinematic equations for those parameterizations allowing to describe the time-dependent relationship

between the different reference frames.

By considering two reference frames, for instance, the body frame B and the ECI frame I presented

in Section 2.1, without loss of generality, the angular rate of frame B with respect to frame I is going

to be denoted by ~ωB{I and is in general time-dependent, ~ωB{I “ ~ωB{Iptq. The kinematic differential

equation which translates the relative orientation of frame B with respect to frame I can thus be written
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as [12]

9AB
I “ ´

”

~ω
B{I
B ˆ

ı

AB
I “ ´

»

—

—

—

–

0 ´ω3 ω2

ω3 0 ´ω1

´ω2 ω1 0

fi

ffi

ffi

ffi

fl

AB
I (3.7)

where ~ωB{IB “

”

ω1 ω2 ω3

ıJ

is the angular rate ~ωB{I written in B frame coordinates. The fundamental

equation of attitude kinematics, Eq. (3.7), can also be written in the quaternion form being given by [9]

9qBI “
1

2
qBI d ω

B{I
B “

1

2
qBI d

»

–

~ω
B{I
B

0

fi

fl “
1

2

»

–

~ω
B{I
B

0

fi

flb qBI (3.8)

By making use of the results from Equations (2.20) and (2.35), Equation (3.8) can be given in matrix

form by

9qBI “
1

2
ΞpqBI q~ω

B{I
B “

1

2
Ωp~ω

B{I
B qqBI “

1

2

»

–

qBI4 ~ω
B{I
B ´ ~ω

B{I
B ˆ ~qBI

´~ω
B{I
B ¨ ~qBI

fi

fl (3.9)

where Ξpqq is given by Equation (2.24) and Ωp~ωq is obtained by replacing

»

–

~ω
B{I
B

0

fi

fl in Equation (2.21):

Ωp~ωq “

»

–

´r~ωˆs ~ω

´~ωJ 0

fi

fl “

»

—

—

—

—

—

—

–

0 ω3 ´ω2 ω1

´ω3 0 ω1 ω2

ω2 ´ω1 0 ω3

´ω1 ´ω2 ´ω3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.10)

with ~ω “
”

ω1 ω2 ω3

ıJ

. By knowing ~ω
B{I
B , which is possible with the use of gyroscopes for instance,

Equations (3.7) and (3.9) can be numerically integrated to propagate the attitude of the spacecraft.

3.3 Attitude Dynamics

The mathematical model of a spacecraft is not complete without the description of the dynamic

equations of motion. Section 3.1 was concerned with the motion of the center of mass of objects in

space whereas this section will be concerned with the motion of the body about its center of mass. For

this analysis, the spacecraft will be considered as a rigid body.

Euler’s equation of motion states that the derivative of the angular momentum 9~hcI of a body about its

center of mass c is equal to the net applied torque ~τ cI about its center of mass [9]:

9~hcI “ ~τ cI (3.11)

Note that Equation (3.11) is only valid in an inertial frame like the ECI frame described in Section 2.1,

hence the use of the subscript I. The rigid body assumption allows to write the angular momentum ~hcI
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as
~hcI “ JcI ~ω

B{I
I (3.12)

where ~ω
B{I
I is the angular velocity of the body with respect to frame I expressed in the I frame and JcI

is the inertia tensor of the body about its center of mass measured in the I frame. The inertia tensor is

given in a general frame by [9, 55]

Jc “

»

—

—

—

–

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

fi

ffi

ffi

ffi

fl

“

ż

‖~r‖2I3 ´~r~rJdm (3.13)

with

Jxx “

ż

py2 ` z2qdm Jxy “ Jyx “ ´

ż

xy dm

Jyy “

ż

px2 ` z2qdm Jxz “ Jzx “ ´

ż

xz dm

Jzz “

ż

px2 ` y2qdm Jyz “ Jzy “ ´

ż

yz dm

where the terms on the left-hand side are the principal moments of inertia and the terms on the right-

hand side are the products of inertia. Vector ~r “
”

x y z
ıJ

is the position vector of a point particle of

mass dm with respect to the body’s center of mass. The inertia tensor JcI is in general not constant, and

so Equation (3.12) is often specified in the body frame where it is constant since the position of each

point particle with respect to the body’s center of mass remains constant in this frame (under rigid body

assumption). The angular momentum of the spacecraft written in body frame coordinates is then given

by
~hcB “ AB

I
~hcI “ AB

I JcI
`

AB
I

˘J
AB
I ~ω

B{I
I “ JcB~ω

B{I
B (3.14)

The fact that Jc is constant in the body frame together with the fact that the external torques applied to

the center of mass of the body are more easily computed in the body frame means that Equation (3.11)

is usually given in body frame coordinates [9]. Equation (3.11) is thus replaced by

9~hcB ` ~ω
B{I
B ˆ ~hcB “ ~τ cB (3.15)

Substituting Equation (3.14) in Equation (3.15) and remembering that the inertia matrix JcB is constant

in body frame coordinates, allows to obtain the Euler’s rotational equation:

9~ω
B{I
B “ pJcBq

´1
”´

JcB~ω
B{I
B

¯

ˆ ~ω
B{I
B ` ~τ cB

ı

(3.16)

This equation together with the kinematics equation, Eq. (3.7) or Eq. (3.9), provide a complete descrip-

tion of the motion of the rigid body [9].

In some cases, however, it is not possible to model the spacecraft as a single rigid body. A more

complex model consists on analyzing the spacecraft as a system of rigid bodies. In a system of N rigid
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bodies, the angular momentum of the system about its center of mass c corresponds to the sum of the

angular momentum of each rigid body about the system’s center of mass [56]:

~hc “
N
ÿ

i“1

~hi{c (3.17)

where the angular momentum of the i’th rigid body about the system’s center of mass ~hi{c is given by

~hi{c “ ~hi{ci `mip~r
ci{c ˆ ~vci{cq (3.18)

where mi is the mass of the i’th rigid body, ~hi{ci is the angular momentum of the i’th rigid body about

its own center of mass ci, and ~r ci{c and ~vci{c are the position and inertial velocity of the i’th rigid body

center of mass relative to the system’s center of mass. The angular momentum ~hi{c is then given in the

body frame by
~h
i{c
B “ J

i{ci
B ω

i{I
B `mi

”

~r
ci{c
B ˆ

´

9~r
ci{c
B ` ~ω

B{I
B ˆ~r

ci{c
B

¯ı

(3.19)

where J
i{ci
B is the inertia matrix of the i’th rigid body about its own center of mass ci written in body

frame coordinates, and ω
i{I
B is the inertial angular velocity of the i’th rigid body written in body frame

coordinates. Under rigid body assumption, the position of ci relative to c is constant in the body frame,

meaning that 9~r ci{cB “ ~0. By noting that ~ωi{IB “ ~ω
i{B
B ` ~ω

B{I
B , Equation (3.19) can by rewritten as

~h
i{c
B “

"

J
i{ci
B `mi

„∥∥∥~r ci{cB

∥∥∥2I3 ´~r ci{cB

´

~r
ci{c
B

¯J
*

~ω
B{I
B ` J

i{ci
B ~ω

i{B
B (3.20)

which explicitly shows in the term J
i{ci
B ~ω

i{B
B the contribution of the the i’th rigid body to the total system’s

angular momentum due to its angular velocity relatively to the body frame.

The ORCASat requires the inclusion of a momentum wheel. Using Equation (3.17) together with

Equation (3.20), the total angular momentum ~h of the system about its center of mass is given in the

body frame by
~hcB “ JB~ω

B{I
B ` JwB~ω

s
B “ JB~ω

B{I
B ` ~hsB (3.21)

where JB is the inertia matrix of the CubeSat (including the momentum wheel) about its center of mass,

JwB is the inertia matrix of the wheel about its own center of mass given in body frame coordinates, and

~ωsB is the angular velocity of the wheel relative to the body frame, i.e., its spin angular velocity. Due to

the wheel symmetry about its spinning axis, Jw is given in a frame W “ tŵs, ŵK1 , ŵK2u aligned with the

wheel’s spin axis by

JwW “ diag
´

Js JK JK
¯

(3.22)

where Js is the principal moment of inertia of the momentum wheel about its spin axis ŵs, which is a

principal axis, and JK is the principal moment of inertia of the momentum wheel about any other two

axes ŵK1 and ŵK2 perpendicular to the spin axis and to themselves. The inertia tensor JwB is then given

by

JwB “ AB
WJwW

`

AB
W

˘J
“ Js

”

ŵs
B pŵ

s
Bq
J
ı

` JK
”

I3 ´ ŵs
B pŵ

s
Bq
J
ı

(3.23)
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with

AB
W “

”

ŵs
B ŵK1

B ŵK2

B

ı

(3.24)

defined according to Equation (2.10). By noting that ~ωsB “ ωŵs
B , Equations (3.21) and (3.23) allow to

express the wheel spin angular momentum contribution ~hsB as

~hsB “ Jsωsŵs
B (3.25)

By using the results from Equations (3.21) and (3.25) in Equation (3.15), the dynamic equation of the

ORCASat is obtained:

JB 9~ω
B{I
B “ pJB~ω

B{I
B ` ~hsBq ˆ ~ω

B{I
B ´

9~hsB ` ~τ
c
B (3.26)

with

~τ cB “ ~τ perturbB ` ~u (3.27)

and
9~hsB “ Js 9ωsŵs

B (3.28)

where ~τ perturbB represents the perturbative torques acting on the spacecraft’s center of mass and ~u is

the control torque about the system’s center of mass. In the ORCASat, the wheel spin axis ŵs
B ” ´b̂2

and so the wheel angular momentum and torque contributions, Equations (3.25) and (3.28) can also be

written as

~hsB “ ´J
sωsb̂2 “ ´h

sb̂2 (3.29)

9~hsB “ ´J
s 9ωsb̂2 “ ´ 9hsb̂2 (3.30)

3.4 Environmental Perturbations

The environmental perturbations are responsible for deviating the true orbit of the spacecraft from the

Keplerian orbit through the perturbative forces and for changing the overall momentum of the spacecraft

through the perturbative moments. According to reference [11], the perturbative forces can be divided

into four classes: nongravitational forces, third-body interactions, nonspherical mass distributions, and

relativistic mechanics. The main nongravitational forces are due to aerodynamic drag and solar radiation

pressure. Relativistic mechanics may be completely neglected in most applications, and for spacecrafts

in LEO, the third-body interactions are negligible. The nonspherical mass distribution has already been

accounted for in Section 3.1. The main perturbative torques affecting a spacecraft in LEO are the gravity

gradient torque, the aerodynamic and Solar Radiation Pressure (SRP) torque, and the magnetic torque

[9, 57].
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3.4.1 Aerodynamic Drag

The aerodynamic drag results from the interaction between the satellite’s surface and the upper at-

mosphere. This force acts in the opposite direction of the spacecraft’s velocity relative to the atmosphere

and is responsible for generating torques on the satellite and for its orbital decay, playing an important

roll on the spacecraft’s mission lifetime in LEO. The drag force is proportional to the atmospheric den-

sity and so it decreases approximately exponentially with the increase in altitude. In order to model

this phenomenon, several assumptions were made [57]: the momentum of molecules arriving at the

body’s surface is totally lost to the surface; the mean thermal motion of the atmosphere is much smaller

than the speed of the spacecraft through the atmosphere; momentum transfer from molecules leaving

the surface is negligible; for spinning vehicles, the relative motion between surface elements is much

smaller than the speed of the mass center.

For a spacecraft modeled as N flat plates (which is a very good representation of the ORCASat), the

aerodynamic drag force acting on plate i can be described as follows:

~Fiaero “ ´
1

2
ρCD‖~vrel‖Si~vrel (3.31)

with

Si “ Ain̂i ¨
~vrel
‖~vrel‖

H

ˆ

n̂i ¨
~vrel
‖~vrel‖

˙

(3.32)

where ρ is the local atmospheric density, CD is the drag coefficient, Ai is the area of the i’th panel of the

satellite and Si corresponds to the projected area of the i’th panel in the direction of ~vrel. The Heaviside

function Hp˝q was used so that only the panels which are facing the flow are accounted for the drag

force. The velocity ~vrel is the velocity of the spacecraft with respect to the atmosphere and is given by

~vrel “ ~vspacecraft ´ ~vatmosphere “ ~vI ´ ~ωC ˆ~rI (3.33)

where the assumption that the atmosphere co-rotates with the Earth was made. Vectors ~vI and ~rI are

the velocity and position of the spacecraft in the ECI frame I and ~ωC “ ωC

”

0 0 1
ıJ

is the Earth’s

angular velocity vector in frame I. The total acceleration of the spacecraft’s center of mass due to the

aerodynamic force is then given by

~aaero “
1

m

N
ÿ

i“1

~Fiaero (3.34)

where m is the total mass of the spacecraft. The torque disturbance due to the aerodynamic drag is

given by

~τ aero “
N
ÿ

i“1

~ri ˆ ~Fiaero (3.35)

where ~ri is the position of the center of pressure of the i’th plate with respect to the spacecraft’s center

of mass.
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3.4.2 Solar Radiation Pressure (SRP)

The SRP affects the spacecraft through the exchange of momentum between the spacecraft and

the photons incident on its surface. Unlike other perturbations, the SRP is not always present, having a

contribution only when the spacecraft is out of eclipse. The model used here for the SRP considers the

following assumptions [9, 57]: the Sun is the only source of radiation interacting with the spacecraft (no

reflected radiation from the Earth or the Moon is considered); for spinning vehicles the relative surface

velocities are negligible; the force due to thermal radiation emitted from the spacecraft is ignored and

the spacecraft’s self-shadowing is ignored. For the current analysis, this last hypothesis is not a major

source of uncertainty since the spacecraft in study is a CubeSat without any concave surfaces which

could produce self-shadowing.

Similarly to what was done for the aerodynamic drag, the spacecraft is going to be modeled as a

collection of N plates. The SRP force exerted on the i’th panel can thus be given by

~Fisrp “ ´p@Si

#

2

«

σidiff
3

` σispecp̂s@ ¨ n̂
iq

ff

n̂i ` p1´ σ
i
specq̂s@

+

(3.36)

with

Si “ Aipn̂
i ¨ ŝ@qH

`

n̂i ¨ ŝ@

˘

(3.37)

where p@ is the solar radiation pressure, ŝ@ is the unit vector pointing from the spacecraft to the Sun,

Ai is the area of the i’th panel, and n̂i is its respective outward normal unit vector. Similarly to the

aerodynamic drag, the Heaviside function Hp˝q was used so that only the panels that are visible to

the Sun, ŝ@ ¨ n̂
i ą 0, are accounted for the SRP force. The coefficients σidiff , σispec are respectively the

diffuse and specular reflection coefficients of the i’th panel. The absorption coefficient σiabs was implicitly

used since all the coefficients sum to unit, σidiff ` σispec ` σiabs “ 1. The total acceleration due to the

SRP is then given by

~asrp “
1

m

N
ÿ

i“1

~Fisrp (3.38)

where m is the total mass of the spacecraft. The torque perturbation due to SRP is given by

~τ srp “
N
ÿ

i“1

~ri ˆ ~Fisrp (3.39)

where ~ri is the vector from the spacecraft’s center of mass to the center of pressure of the SRP on the

i’th panel.

3.4.3 Magnetic Torque

The Earth’s magnetic field can have a significant effect on a spacecraft, specially in LEO where the

field is stronger. The magnetic torque results from the interaction between the spacecraft’s magnetic field

and the geomagnetic field, being the spacecraft’s magnetic moment usually the dominant source of this

torque [11]. The magnetic disturbance torque about the spacecraft’s center of mass can be described
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by

~τmag “ ~mˆ ~B (3.40)

where ~m (in Am2) is the net magnetic dipole moment generated by the spacecraft and ~B is the Earth’s

magnetic field. The magnetic torque can be used to control the attitude of the spacecraft, by using

permanent magnets or magnetorquers, but there are also magnetic dipole moments that can lead to

magnetic disturbance torques. These disturbance dipole moments are usually generated by current

loops present in the spacecraft or by other electronics or scientific instruments [57].

Similarly to the gravity force from Section 3.1, the Earth’s magnetic field can be written as a gradient

of a scalar potential function V [9, 11]:
~B “ ´∇V (3.41)

where the magnetic potential V is given in spherical harmonics expansion in the ECEF frame by [58]

V “ a
8
ÿ

n“1

ˆ

a

‖~r‖

˙n`1 n
ÿ

m“0

P̄mn psinλq rg
m
n ptq cos pmφq ` hmn ptq sin pmφqs (3.42)

where a is the magnetic spherical reference radius, λ and φ are the geocentric latitude and longitude

respectively and ~r is the position of a point in space with respect to the Earth’s center of mass. The coef-

ficients gmn ptq and hmn ptq are the time-dependent Gauss coefficients of degree n and order m describing

the Earth’s main magnetic field and are conventionally given in nanotesla (nT). The parameters P̄mn are

the Schmidt semi-normalized associated Legendre functions.

3.4.4 Gravity Gradient Torque

The non-symmetrical distribution of mass in a rigid body leads to a gravitational torque about the

body’s center of mass. This torque is called gravity gradient torque. The expression derived for the

gravity gradient disturbance torque will have in consideration the following assumptions [57]: only the

influence of the Earth is going to be considered; the Earth’s gravity field possesses a spherically sym-

metrical mass distribution; the distance from the spacecraft to the center of mass of the Earth is much

bigger than the size of the spacecraft itself; the spacecraft consists on a single rigid body. The first two

assumptions allow us to write the gravity force as

~Fgrav “ ´µC

ż

~r

‖~r‖3
dm (3.43)

where µC is the gravitational parameter of the Earth and ~r is the position of the mass element dm with

respect to the center of mass of the Earth. By considering

~r “ ~Rc `~r 1 (3.44)

where ~Rc is the position of the center of mass of the spacecraft with respect to the center of mass of the

Earth and ~r 1 is the position of the element dm relatively to the spacecraft’s center of mass, assumption
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three allows
1

‖~r‖3
to be approximated as

1

‖~r‖3
»

1∥∥∥~Rc
∥∥∥3

¨

˚

˝

1´ 3
~r 1 ¨ ~Rc∥∥∥~Rc

∥∥∥2
˛

‹

‚

(3.45)

The torque about the spacecraft’s center of mass due to gravity is given by

~τ gg “

ż

~r 1 ˆ d~Fgrav “ ´µC

ż

~r 1 ˆ~r

‖~r‖3
dm (3.46)

By using the results from Equations (3.45) and (3.44) in Equation (3.46)

~τ gg “ ´
µC∥∥∥~Rc

∥∥∥3
ˆ
ż

~r 1 dm

˙

ˆ ~Rc `
3µC∥∥∥~Rc

∥∥∥5
ż

p~r 1 ˆ ~Rcqp~r 1 ¨ ~Rcq dm (3.47)

The first term on the right-hand side is zero by definition of center of mass
ş

~r 1 dm “ ~0. The second term

can be rearranged as follows:

~τ gg “ ´
3µC∥∥∥~Rc

∥∥∥5 ~Rc ˆ

ˆ
ż

~r 1p~r 1qJ dm

˙

~Rc “ (3.48a)

“ ´
3µC∥∥∥~Rc

∥∥∥5 ~Rc ˆ

ˆ
ż ∥∥~r 1∥∥2I3 dm´ Jc

˙

~Rc “ (3.48b)

“ ´
3µC∥∥∥~Rc

∥∥∥5 ~Rc ˆ

ˆ
ż ∥∥~r 1∥∥2I3 dm˙

~Rc `
3µC∥∥∥~Rc

∥∥∥5 ~Rc ˆ Jc ~Rc (3.48c)

where by recalling Equation (3.13), Jc “
ş

‖~r 1‖2I3 ´ ~r 1p~r 1qJ dm is the inertia tensor of the spacecraft

about its center of mass. The first term of Equation (3.48c) is zero since ~Rc ˆ kI3 ~R
c “ k~Rc ˆ ~Rc “ ~0.

The gravity gradient torque about the spacecrafts center of mass is then given by

~τ gg “
3µC∥∥∥~Rc

∥∥∥3 ô3 ˆ Jcô3 (3.49)

where ô3 is the z axis of the orbital frame O defined in Section 2.1.3.

3.5 Linearized Model

A linearized model for the equations of motion of the ORCASat is going to be used in Chapter 5 in

the development of the LQR controllers. In order to linearize the equations of motion of the satellite,

an equilibrium state must be chosen about which the linearization is going to be performed. Since the

nominal state is nadir pointing, the natural choice is to let the angular velocity of the satellite relative to

the LVLH frame O, ~ωB{O, go to zero and by making the body frame coincide with the orbital frame so

that the attitude quaternion which defines the rotation of the body frame with respect to the orbital frame,
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qBO, is the identity quaternion:

~ω
B{O
Bref

“

”

0 0 0
ıJ

qBOref
“

”

0 0 0 1
ıJ

(3.50)

The angular velocity of the satellite with respect to frame O will then consist of a perturbation δ~ω from

the reference ~ω
B{O
Bref

:

~ω
B{O
B “

»

—

—

—

–

δω1

δω2

δω3

fi

ffi

ffi

ffi

fl

` ~ω
B{O
Bref

“ δ~ω (3.51)

while the attitude quaternion will consist of a small rotation δq about the reference attitude quaternion

qBOref
:

qBO “ δq b qBOref
“ δq (3.52)

By using the definition of quaternion as stated in Equation (2.16) and using the small-angle approxima-

tion sin θ » θ and cos θ » 1, δq can be approximated by

δq “

»

—

—

—

—

—

—

–

e1 sin δθ
2

e2 sin δθ
2

e3 sin δθ
2

cos δθ2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

»

—

—

—

—

—

—

–

δθ1{2

δθ2{2

δθ3{2

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

–

1
2δ
~θ

1

fi

fl “

»

–

δ~q

1

fi

fl (3.53)

where δθi{2 “ eipδθ{2q. By using Equations (3.51), (3.52) and (3.53) together in Equation (3.9) and

disregarding the second-order terms, the linearized kinematics are given by

9qBO “

»

–

δ 9~q

0

fi

fl “
1

2

»

–

δ~ω

0

fi

fl (3.54)

The first step to linearize the dynamics equation, Eq. (3.26), consists in relating the angular velocity

of the spacecraft ~ωB{I with the perturbed angular velocity δ~ω from Equation (3.51). The inertial angular

velocity of the spacecraft in the body frame ~ωB{IB can be expressed as

~ω
B{I
B “ ~ω

B{O
B ` ~ω

O{I
B (3.55)

For linearization purposes, the angular velocity of the orbit frame with respect to the inertial frame, ~ωO{IO ,

is going to be considered as constant:

~ω
O{I
O »

»

—

—

—

–

0

´ω0

0

fi

ffi

ffi

ffi

fl

(3.56)

where ω0 “ 2π{Torb is the average value of the orbital rate. This is a good approximation since the orbit

considered (see Chapter 7) is almost circular, having an eccentricity value of 8.3ˆ10´4. The relationship

between ~ωO{IB and ~ωO{IO is done using the DCM AB
O which represents the rotation of the body frame with
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respect to the orbit frame as follows

~ω
O{I
B “ AB

O~ω
O{I
O (3.57)

The rotation matrix AB
O can also be written as a small rotation about a reference rotation matrix like done

previously with the attitude quaternion in Equation (3.52):

AB
O “ pδAqA

B
Oref

“ pδAqI3 “ δA (3.58)

The matrix δA can be obtained by substituting the attitude quaternion from Equation (3.53) in Equation

(2.36). Disregarding second-order terms it gives

δA »

»

—

—

—

–

1 2δq3 ´2δq2

´2δq3 1 2δq1

2δq2 ´2δq1 1

fi

ffi

ffi

ffi

fl

“ I3 ´ 2
”

δ~qˆ
ı

(3.59)

where δqi, i “ 1, 2, 3 are the components of δ~q. The angular velocity ~ωO{IB can thus be approximated by

~ω
O{I
B “ AB

O~ω
O{I
O » δA

»

—

—

—

–

0

´ω0

0

fi

ffi

ffi

ffi

fl

»

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

(3.60)

By replacing Equations (3.51) and (3.60) in Equation (3.55), the inertial angular velocity of the body in

body-frame coordinates is given by

~ω
B{I
B “ δ~ω `

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

(3.61)

By replacing Equation (3.61) in the dynamics equation, Eq. (3.26), and by setting 9~hs “ 0, since in

nominal mode the momentum wheel will be spinning at a fixed rate, 9ω “ 0, the dynamics equation is

thus given by

J

¨

˚

˚

˚

˝

δ 9~ω `

»

—

—

—

–

´2ω0δ 9q3

0

2ω0δ 9q1

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

“

»

—

—

—

–

J

¨

˚

˚

˚

˝

δ~ω `

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

` ~hs

fi

ffi

ffi

ffi

fl

ˆ

»

—

—

—

–

δ~ω `

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

fl

` ~u (3.62)

By expanding the different terms from Equation (3.62) and by using the linearized kinematics equation,

28



Eq. (3.54), in Equation (3.62), the dynamics equation can be written as

Jδ 9~ω ` J

»

—

—

—

–

´ω0δω3

0

ω0δω1

fi

ffi

ffi

ffi

fl

“ pJδ~ωq ˆ δ~ω ` pJδ~ωq ˆ

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

`

¨

˚

˚

˚

˝

J

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

ˆ δ~ω`

`

¨

˚

˚

˚

˝

J

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

ˆ

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

` ~hs ˆ δ~ω ` ~hs ˆ

»

—

—

—

–

´2ω0δq3

´ω0

2ω0δq1

fi

ffi

ffi

ffi

fl

` ~u (3.63)

By using J “ diag
´

J1 J2 J3

¯

as the inertia tensor of the spacecraft whose principal moments of

inertia are aligned with the body frame B, then, by developing all the cross products and disregarding

second-order terms one gets

Jδ 9~ω “ ω0J

»

—

—

—

–

δω3

0

´δω1

fi

ffi

ffi

ffi

fl

`ω0

»

—

—

—

–

J3δω3

0

´J1δω1

fi

ffi

ffi

ffi

fl

`ω0

»

—

—

—

–

´J2δω3

0

J2δω1

fi

ffi

ffi

ffi

fl

` 2ω2
0

»

—

—

—

–

´KxJ1δq1

0

KzJ3δq3

fi

ffi

ffi

ffi

fl

`hs

»

—

—

—

–

´δω3

0

δω1

fi

ffi

ffi

ffi

fl

´ 2ω0h
s

»

—

—

—

–

δq1

0

δq3

fi

ffi

ffi

ffi

fl

`~u

(3.64)

where Kx “
J2 ´ J3
J1

and Kz “
J1 ´ J2
J3

and hs is defined in Equation (3.29). Equation (3.64) can be

further simplified by multiplying all terms by J´1, giving

δ 9~ω “ ω0

»

—

—

—

–

δω3

0

´δω1

fi

ffi

ffi

ffi

fl

´ ω0

»

—

—

—

–

Kxδω3

0

Kzδω1

fi

ffi

ffi

ffi

fl

` 2ω2
0

»

—

—

—

–

´Kxδq1

0

Kzδq3

fi

ffi

ffi

ffi

fl

` hs

»

—

—

—

–

´δω3{J1

0

δω1{J3

fi

ffi

ffi

ffi

fl

´ 2ω0h
s

»

—

—

—

–

δq1{J1

0

δq3{J3

fi

ffi

ffi

ffi

fl

` ~u1 (3.65)

ô δ 9~ω “

»

—

—

—

–

rw0p1´Kxq ´ h
s{J1sδω3 ´ 2ω0pω0Kx ` h

s{J1qδq1

0

rhs{J3 ´ ω0p1`Kzqsδω1 ` 2ω0pω0Kz ´ h
s{J3qδq3

fi

ffi

ffi

ffi

fl

` ~u1 (3.66)

where ~u1 “ J´1~u. By defining the state vector x as

x “
”

δω1 δω2 δω3 δq1 δq2 δq3

ıJ

(3.67)

the linearized equations of motion of the satellite are written as

9x “ Ax`

»

–

J´1~u

03ˆ3

fi

fl (3.68)
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where 03ˆ3 is a 3ˆ 3 matrix fully populated with zeros. The state matrix A is given by

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 w0 p1´Kxq ´
hs

J1
´2ω0

ˆ

ω0Kx `
hs

J1

˙

0 0

0 0 0 0 0 0

hs

J3
´ ω0 p1`Kzq 0 0 0 0 2ω0

ˆ

ω0Kz ´
hs

J3

˙

1{2 0 0 0 0 0

0 1{2 0 0 0 0

0 0 1{2 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.69)

The control torque ~u is given by

~u “ ~mctrl ˆ ~BB “ ~mctrl ˆ

´

~AB
O
~BO

¯

(3.70)

where ~mctrl is the dipole moment generated by the magnetorquers, ~BB is the local geomagnetic field

in body frame coordinates and ~BO is the local geomagnetic field is the orbit frame. By using Equation

(3.58) the previous equation writes:

~u “ ~mctrl ˆ p~BO ´ 2δ~q ˆ ~BOq » ~mctrl ˆ ~BO (3.71)

where the second equality is true because when the linear feedback of the form ~mctrl “ ´K 1x is

implemented, with K 1 the 3 ˆ 6 gain matrix, the term ´2 ~mctrl ˆ pδ~q ˆ ~BOq becomes a second-order

term.
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Chapter 4

Attitude Determination

In this chapter, the different algorithms related to the estimation of the attitude of the ORCASat are

outlined. In Section 4.1, Wahba’s problem is presented and solved using the quaternion parametrization

by means of the Quaternion Estimator (QUEST) algorithm. The Method of Sequential Rotations (MSR)

used to overcome the singularity problem of the QUEST algorithm is presented as well as the solution

for the Wahba’s problem only using two vector observations which are related to the set of sensors

present in the ORCASat. In Section 4.2, the EKF which will be the base for the following two algorithms

is reviewed. In Section 4.2.1, the Multiplicative Extended Kalman Filter (MEKF) is developed, and finally,

in Section 4.2.2, the Magnetometer Calibration Extended Kalman Filter (MCEKF) is presented. This last

estimation filter will be used to provide a real-time calibration of the magnetometer of the ORCASat in

an attempt to improve the performance of the QUEST algorithm and the performance of the MEKF. The

flowcharts corresponding to the implementation of the different algorithms are present in Appendix A.

4.1 Quaternion Estimator (QUEST)

Wahba’s problem tries to find the orthogonal matrix A with determinant `1 that minimizes the cost

function [9]

JpAq “
1

2

N
ÿ

i“1

ai

∥∥∥~bi ´A~ri

∥∥∥2 (4.1)

This least squares formula tries to find the best fit for the attitude matrix A given the set ofN independent

unit vectors ~bi measured in a spacecraft’s body frame and the corresponding unit vectors ~ri given in a

reference frame. The scalar values ai are non-negative weights. Wahba’s Problem has different ways to

be solved comprising two different classes of problems, the ones that solve the attitude matrix directly

and the ones that solve the quaternion representation of the attitude matrix. Since the main attitude

representation for the ORCASat is the quaternion representation, the method chosen was the QUEST

algorithm. This method was also chosen due to the fact that it is the most widely used algorithm for

solving Wahba’s problem [21].

Equation (4.1) can be expressed in a more convenient form by expanding the quadratic term
∥∥∥~bi ´A~ri

∥∥∥2.
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Taking in consideration that vectors ~ri and ~bi are unit vectors and that matrix A is orthogonal, the

quadratic term can be simplified as

∥∥∥~bi ´A~ri

∥∥∥2 “ ´

~bi ´A~ri

¯J ´

~bi ´A~ri

¯

“ p~biq
J~bi`pA~riq

JA~ri´p~biq
JA~ri´pA~riq

J~bi “ 2´2p~biq
JA~ri

(4.2)

where the last equality is true due to the fact that the product pA~riqJ~bi is a scalar and the transpose

of a scalar is equal to that same scalar. By substituting Equation (2.36) in Equation (4.2) and using the

results from Equations (2.35) and (2.20), the last term of Equation (4.2) can be written in an explicit

quaternion form as follows:

p~biq
JΞJpqqΨpqq~ri “

´

Ξpqq~bi

¯J

Ψpqq~ri “ pqdbiq
Jpqbriq “ pbibqqJpridqq “ qJrbibs

Jrridsq (4.3)

where bi “

»

–

~bi

0

fi

fl and ri “

»

–

~ri

0

fi

fl. Equation (4.1) can thus be rewritten in quaternion form as

Jpqq “ λ0 ´ qJKq (4.4)

where

λ0 “
N
ÿ

i“1

ai (4.5)

and K is a symmetric traceless matrix given by

K “

»

–

B`BJ ´ ptr BqI3 ~z

~zJ tr B

fi

fl (4.6)

with B, the attitude profile matrix, and the vector ~z given by

B “

N
ÿ

i“1

ai~bi~r
J
i ~z “

»

—

—

—

–

B23 ´B32

B31 ´B13

B12 ´B21

fi

ffi

ffi

ffi

fl

(4.7)

where Bij is the element from the i’th row and j’th column of matrix B. The cost function from Equation

(4.4) is minimized if qJKq is maximized. By using the Lagrange multiplier to append the quaternion unit

norm constrain to the cost function Jpqq, the function to maximize is the following:

gpqq “ qJKq` λp1´ qJqq (4.8)

In order to find an extreme of Equation (4.8) one can take its derivative with respect to q

dgpqq

dq
“ 0 ô Kq “ λq (4.9)
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which is the know eigenvalue/eigenvector problem applied to the K matrix:

pK´ λI4qq “ 0 (4.10)

with I4 defining the 4ˆ 4 identity matrix. By replacing Equation (4.9) in Equation (4.8), function gpqq can

be rewritten as

gpqq “ qJλq` λp1´ qJqq “ λ (4.11)

Equations (4.9) and (4.11) show that the estimated quaternion is the normalized eigenvector of K that

corresponds to the largest eigenvalue. This method of solving Wahba’s problem, by computing the

largest eigenvalue of K and by normalizing the respective eigenvector, is known as the q-method and

was the first useful solution of Wahba’s problem for spacecraft attitude determination [9].

The QUEST algorithm on the other hand tries to solve Wahba’s problem without solving the eigenval-

ue/eigenvector problem. This method should be faster than the q-method although with some accuracy

loss. Equation (4.9) is equivalent to the following equations

pρI3 ´ Sq~q “ q4~z (4.12a)

pλmax ´ tr Bqq4 ´ p~zq
J~q “ 0 (4.12b)

where λmax is the maximum eigenvalue of K, ρ “ λmax ` tr B, S “ B`BJ and ~q is the vector part of

the attitude quaternion q. Using the unit property of the attitude quaternion ‖~q‖2 ` q24 “ 1 together with

Equation (4.12a), it is possible to obtain the optimal attitude quaternion as function of λmax. Equation

(4.12a) can be rewritten as

~q “
q4

detpρI3 ´ Sq
radjpρI3 ´ Sqs~z (4.13)

By using the previous equation together with the unit norm constrain condition of the attitude quaternion,

it is possible to write

‖~q‖2 ` q24 “ 1 “
q24

det2pρI3 ´ Sq
‖radjpρI3 ´ Sqs~z‖2 ` q24 (4.14)

By solving Equation (4.14) in order to q4:

q4 “
detpρI3 ´ Sq

b

det2pρI3 ´ Sq ` ‖radjpρI3 ´ Sqs~z‖2
(4.15)

The expression for the attitude quaternion q is then given by using Equation (4.15) in Equation (4.13)

q “
1

α

»

–

adjpρI3 ´ Sq~z

detpρI3 ´ Sq

fi

fl (4.16)

where α “
b

det2pρI3 ´ Sq ` ‖radjpρI3 ´ Sqs~z‖2 and is usually determined by normalization of q. Equa-

tion (4.16) shows that if λmax is known the optimal attitude quaternion can be computed. Using Equation
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(4.16) in Equation (4.12b) yields

pλmax ´ tr BqdetpρI3 ´ Sq ´ ~zJ adjpρI3 ´ Sq~z “ 0 (4.17)

Equation (4.17) can be converted into an explicit equation for λmax by applying some algebra and by

using the definition of the adjoint and the determinant applied to the matrix ρI3 ´ S as explained in [9].

Equation (4.17) can thus be rewritten as:

0 “ ψQUEST pλq “ rλ
2 ´ ptr Bq2 ` trpadj Sqsrλ2 ´ ptr Bq2 ´ ‖~z‖2s´

´ pλ´ tr Bqp~zJS~z` det Sq ´ ~zJS2~z (4.18)

The value of λmax can be obtained by solving Equation (4.18) with the Newton-Raphson method using

as first estimation λmax “ λ0 where λ0 follows from Equation (4.5). The QUEST algorithm presented

has a singularity when α “ 0, or equivalently when ρI3´S is singular. This happens when the estimated

attitude quaternion corresponds to a 180˝ rotation, i.e. q4 “ 0 [9, 18].

Method of Sequential Rotations (MSR)

The method of sequential rotations allows us to overcome the singularity problem of QUEST by

computing the attitude with respect to a rotated reference frame Ik, where k means the rotation about

the k’th coordinate axis of the original reference frame I. This rotation is implemented by writing the

coordinates of the reference vectors ~ri in the new frame Ik by simply multiplying them by the appropriate

rotation matrix AIk
I . After solving the attitude with respect to the rotated reference frame Ik, an inverse

rotation is performed to obtain the attitude in the desired frame. For simplicity reasons, the frames are

rotated 180˝ about one of the coordinate axes. The relation between the desired attitude quaternion

q ” qBI and the solution obtained in the rotated reference frame qk ” qBIk is given by

q ” qBI “ qBIk b qIkI “ qk b qp~ek, πq “

»

–

~qk

qk4

fi

flb

»

–

~ek

0

fi

fl “

»

–

qk4~ek ` ~ek ˆ ~q
k

´~qk ¨ ~ek

fi

fl “ Ekq
k (4.19)

where ~ek is the unit vector of the k’th coordinate axis of I and Ek is a skew-symmetric orthogonal matrix

given by

Ek “

»

–

r~ekˆs ~ek

´~eJk 0

fi

fl “

»

—

—

—

—

—

—

–

0 ´e3 e2 e1

e3 0 ´e1 e2

´e2 e1 0 e3

´e1 ´e2 ´e3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.20)
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The inverse relation is simply given by

qk “ EJk q “

»

—

—

—

—

—

—

–

0 e3 ´e2 ´e1

´e3 0 e1 ´e2

e2 ´e1 0 ´e3

e1 e2 e3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q (4.21)

It can be seen from Equation (4.21) that the k’th component of the attitude quaternion q ends up as the

fourth component of qk. Since the QUEST algorithm works better if the forth component of the attitude

quaternion being computed is the further away from zero, the method of sequential rotations allows to

find the reference frame in which q4 is at least 1{2 due to the unit norm of the attitude quaternion. The

optimal reference frame rotation is the one about the axis corresponding to the component of q having

the largest magnitude. If the largest component of q is the fourth, i.e., the scalar one, thus no rotation is

needed to be performed. This selection can be performed by using a previously computed quaternion.

The implementation of the QUEST algorithm together with the MSR is summarized in Table 4.1.

Table 4.1: QUEST algorithm implementation including the MSR.

Normalization of input vectors ~bi and ~ri

Determination of the component of the previously computed quaternion with the largest magnitude - MSR

If necessary, apply the 180˝ rotation about the k’th coordinate axis of I, using AIk
I , to the reference frame vectors ~ri - MSR

Construction of the matrix B and of the vector ~z using Equation (4.7)

Construction of the matrix S: S “ B`BJ

Determination of λ0 using Equation (4.5)

Newton-Raphson iteration of Equation (4.18) to find λmax using λ0 as initial condition

Calculation of the attitude quaternion using Equation (4.16) (where ρ “ λmax ` tr B)

Calculation of the attitude quaternion in the original frame by undoing the initial rotation using Equation (4.19) - MSR

Two vector observations

In the case of the ORCASat, only two observations will be available at the same time, the sun vector

and the magnetic field vector. This provides some simplifications to the previous equations and a simple

closed-form solution for the characteristic equation of the K matrix. The solution for Wahba’s problem

using the two vector observations case also provides a generalization of the TRIAD algorithm using

arbitrary measurement weights. It is possible to show that the maximum eigenvalue λmax can be given

by [9]

λmax “

c

a21 ` a
2
2 ` 2a1a2

”

p~b1 ¨ ~b2qp~r1 ¨~r2q `
∥∥∥~b1 ˆ ~b2

∥∥∥‖~r1 ˆ~r2‖ı (4.22)

This equation avoids the need of using the Newton-Raphson algorithm to obtained the value of λmax.

The closed form solution for the attitude quaternion is given by [9]
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q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1

2

c

γpγ ` αq
´

1` ~b3 ¨~r3

¯

»

—

–

pγ ` αq
´

~b3 ˆ~r3

¯

` β
´

~b3 `~r3

¯

pγ ` αq
´

1` ~b3 ¨~r3

¯

fi

ffi

fl

for α ě 0

1

2

c

γpγ ´ αq
´

1` ~b3 ¨~r3

¯

»

—

–

β
´

~b3 ˆ~r3

¯

` pγ ´ αq
´

~b3 `~r3

¯

β
´

1` ~b3 ¨~r3

¯

fi

ffi

fl

for α ă 0

(4.23)

where ~b3, ~r3, α, β and γ are given respectively by

~b3 “
~b1 ˆ ~b2∥∥∥~b1 ˆ ~b2

∥∥∥ (4.24)

~r3 “
~r1 ˆ~r2
‖~r1 ˆ~r2‖

(4.25)

α “
´

1` ~b3 ¨~r3

¯´

a1~b1 ¨~r1 ` a2~b2 ¨~r2

¯

`

´

~b3 ˆ~r3

¯

¨

´

a1~b1 ˆ~r1 ` a2~b2 ˆ~r2

¯

(4.26)

β “
´

~b3 `~r3

¯

¨

´

a1~b1 ˆ~r1 ` a2~b2 ˆ~r2

¯

(4.27)

γ “
a

α2 ` β2 (4.28)

When ~b3 ¨ ~r3 “ ´1, Equation (4.23) does not have a solution. This problem can be solved by using

the MSR where for the case of the two vector observations, a 180˝ rotation about the k’th axis of the

reference frame gives

´

~b3 ¨~r
rotated
3

¯

“ 2
´

~b3

¯

k

`

~runrotated3

˘

k
´ ~b3 ¨~r

unrotated
3 (4.29)

where p~b3qk and p~runrotated3 qk are the k’th component of vectors ~b3 and ~runrotated3 respectively. From

Equation (4.29), it is possible to see that if
´

~b3 ¨~r
unrotated
3

¯

is greater than any of the other products
´

~b3

¯

k

`

~runrotated3

˘

k
there is no need for a rotation, otherwise, in order to ensure the largest value for

´

~b3 ¨~r
rotated
3

¯

, a rotation is performed about the k’th axis of the reference frame where the value of
´

~b3

¯

k

`

~runrotated3

˘

k
is greater.

The implementation of the QUEST algorithm using two vector observations and the MSR is summa-

rized in Appendix A under the form of a flowchart by Figure A.5.

4.2 Extended Kalman Filter (EKF)

In Kalman Filtering, the system in study is assumed to be described by a linear model. In practice,

however, not every system can be described by using a linear model. There are different methods

to tackle this problem, being a common approach to use the EKF, which consists of representing the

error dynamics by a linearized first-order Taylor series expansion about the system’s current best state

estimate, which is considered to be sufficiently close to the true state. The main attitude estimator

which will operate in the ORCASat will be the MEKF which as the name implies is a variant of the EKF.
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Consider the following system truth model with discrete-time measurements given by

9xptq “ fpxptq,uptq, tq `Gptqwptq, wptq „ N p0,Qptqq (4.30)

yk “ hpxkq ` vk, vk „ N p0,Rkq (4.31)

where fpxptq,uptq, tq is a sufficiently differentiable nˆ1 vector function and hpxkq is themˆ1 observation

vector function, xptq is the nˆ 1 state vector and yptq is the mˆ 1 measurement vector. The nˆ 1 wptq

vector and the mˆ1 vptq vector are zero-mean Gaussian white-noise process vectors with covariances

EtwptqwJpτqu “ Qptqδpt´ τq (4.32a)

Etvkv
J
j u “ Rkδkj (4.32b)

where Et˝u denotes the expected value operator, δpt ´ τq and δkj are Dirac delta function and the

Kronecker delta function respectively, Qptq is an n ˆ n covariance matrix and Rk and m ˆ m covari-

ance matrix. The estimated state is going to be denoted with a wide caret and is given by taking the

expectation of the state x:

x̂ptq “ Etxptqu (4.33)

The EKF involves the notion that the true state is sufficiently close to the estimated state and so the

error dynamics can be represented fairly accurately by a linearized first-order Taylor series expansion:

fpxptq,uptq, tq » fpx̂ptq,uptq, tq ` Fptqrxptq ´ x̂ptqs (4.34)

hpxkq » hpx̂kq `Hkrxk ´ x̂ks (4.35)

with F and H defined as

Fptq “
df

dx

∣∣∣∣
x̂ptq,uptq

Hk “
dh

dx

∣∣∣∣
x̂k

(4.36)

where x̂k is the estimated state x̂ evaluated at time t “ tk. By taking the expectation of Equation (4.30),

the predicted estimated state differential equation is given by

9̂xptq “ fpx̂ptq,uptq, tq (4.37)

By defining the propagation error ε´ptq as

ε´ptq “ xptq ´ x̂´ptq (4.38)

with x̂´ptq ” x̂ptq and taking its derivative with respect to time while using the result from Equation (4.37)

and Equation (4.30) together with Equation (4.34), the dynamics of the propagation error are given by

9ε´ptq “ Fptqε´ptq `Gptqwptq (4.39)
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where the superscript ´ was used to make evident that this error is prior to the update stage. The

covariance of ε´ptq is given by

P´ptq “ E
!

ε´ptq
“

ε´ptq
‰J
)

(4.40)

and obeys the dynamic equation [9]

9P´ptq “ E
 

ε´ptqp 9ε´qJ
(

` E
!

9ε´
“

ε´ptq
‰J
)

“ FptqPptq `PptqFptqJ `GptqQptqGptqJ (4.41)

The discrete-time update equation of the EKF is given by

x̂`k “ x̂´k `∆x “ x̂´k `Kkryk ´ hpx̂´k qs (4.42)

where the superscript ` in x̂`k denotes the discrete-time right after the update stage, x´k is the prop-

agated estimated state x̂´ptq evaluated at time tk and ∆x “ Kkryk ´ hpx̂´k qs is a correction which is

function of the difference between the measured and the predicted system output. The K matrix is the

nˆm Kalman gain matrix. By defining the update error ε` at time t “ tk as

ε`k “ xk ´ x̂`k (4.43)

where xk “ xpt “ tkq is the true state of the system at time tk, and substituting Equation (4.31) with

hpxkq linearized about x̂´k according to Equation (4.35) in Equation (4.42), the update error ε` can be

written as

ε`k “ rIn ´KkHksε
´
k `Kkvk (4.44)

where In is the nˆ n identity matrix. The updated covariance matrix P`k is then given by

P`k “ E
!

ε`k
`

ε`k
˘J

)

“ rIn ´KkHksP
´
k rIn ´KkHks

J `KkRkK
J
k (4.45)

where P´k “ P´pt “ tkq is given from the propagated system by Equation (4.41). The optimal gain

matrix Kk is then obtained by minimizing Jk “ tr P`k which leads to [9]

Kk “ P´k HJ
k

`

HkP
´
k HJ

k `Rk

˘´1
(4.46)

Substituting Equation (4.46) into Equation (4.45) gives the covariance matrix of the updated error:

P`k “ pIn ´KkHkqP
´
k (4.47)

The continuous-discrete EKF algorithm is then given by the set of Equations (4.48) and (4.49), where

Equations (4.48) represent the propagation stage, and Equations (4.49) represent the update stage.

9̂xptq “ fpx̂ptq,uptq, tq (4.48a)

9P ptq “ FptqPptq `PptqFJptq `GptqQptqGJptq (4.48b)
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Kk “ P´k HJ
k

`

HkP
´
k HJ

k `Rk

˘´1
(4.49a)

P`k “ pIn ´KkHkqP
´
k (4.49b)

∆x “ Kk

“

yk ´ hpx̂´k q
‰

(4.49c)

x̂`k “ x̂´k `∆x (4.49d)

4.2.1 Multiplicative Extended Kalman Filter (MEKF)

The great advantage of the MEKF is the use of the multiplicative quaternion error formulation given

by

δq “ qb q̂´1 (4.50)

with q ” qBI and q̂ ” qB̂I , which allows to enforce the unit norm constrain of the estimated quaternion

with fewer problems than the addictive quaternion formulation counterpart where the error quaternion

∆q is defined as ∆q “ q´ q̂. The term δq in Equation (4.50) represents the rotation of true body frame

B with respect to the estimated body frame B̂ and can be seen as the quaternion counterpart of the

rotation matrix AB
B̂

by following the notation of Section 2.2.1. The objective of the MEKF is to estimate

the error δq and use it to update the propagated attitude quaternion q̂. The first step is the determination

of the kinematics model for the quaternion error δq. Taking the the time derivative of Equation (4.50)

yields
9δq “ 9qb q̂´1 ` qb 9̂q´1 (4.51)

Finding an expression for 9̂q´1 can be done by recalling that by definition, the product of a quaternion

with its inverse is the identity quaternion, as seen in Equation (2.32) and repeated here as

q̂b q̂´1 “

”

0 0 0 1
ıJ

(4.52)

Taking the derivative with respect to time of the previous equation gives

9̂q b q̂´1 ` q̂b 9̂q´1 “ 04 (4.53)

The true and estimated quaternions satisfy the kinematic equations

9q “
1

2

»

–

~ω

0

fi

flb q (4.54a)

9̂q “
1

2

»

–

ω̂

0

fi

flb q̂ (4.54b)
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By substituting Equation (4.54b) in Eq. (4.53) and using the result from Equation (4.52), Equation (4.53)

can be written as
1

2

»

–

ω̂

0

fi

flb q̂b q̂´1 ` q̂b 9̂q´1 “
1

2

»

–

ω̂

0

fi

fl` q̂b 9̂q´1 “ 04 (4.55)

By multiplying both sides of Equation (4.55) by rq̂´1bs, the expression for 9̂q´1 can be obtained:

9̂q´1 “ ´
1

2
q̂´1 b

»

–

ω̂

0

fi

fl (4.56)

Substituting the quaternion kinematic model from Equation (4.54a) together with Equation (4.56) in

Equation (4.51) gives

9δq “
1

2

»

–

~ω

0

fi

flb qb q̂´1 ´
1

2
qb q̂´1 b

»

–

ω̂

0

fi

fl “
1

2

¨

˝

»

–

~ω

0

fi

flb δq´ δqb

»

–

ω̂

0

fi

fl

˛

‚ (4.57)

where the last equality was obtained by recovering the definition of the error quaternion given by Equa-

tion (4.50). By defining the error angular velocity vector ∆~ω as

∆~ω “ ~ω ´ ω̂ (4.58)

and by substituting ~ω “ ω̂ `∆~ω from Equation (4.58) in Equation (4.57) gives

9δq “
1

2

¨

˝

»

–

ω̂

0

fi

flb δq´ δqb

»

–

ω̂

0

fi

fl

˛

‚`
1

2

»

–

∆~ω

0

fi

flb δq (4.59)

This last equation can be further simplified by using the quaternion product properties from Equations

(2.20) to (2.22) giving

9δq “ ´

»

–

rω̂ˆsδ~q

0

fi

fl`
1

2

»

–

∆~ω

0

fi

flb δq (4.60)

where δ~q is the vector part of δq: δq “

”

δ~qJ δq4

ıJ

. The only non-linear term corresponds to the

last term on the right-hand side of the previous equation. By using the first-order approximation of δq

(Equation (3.53)) and by neglecting the second-order terms, the term on the right-hand side results in

1

2

»

–

∆~ω

0

fi

flb δq »
1

2

»

–

∆~ω

0

fi

flb

¨

˝Iq `

»

–

δ~q

0

fi

fl

˛

‚»
1

2

»

–

∆~ω

0

fi

fl (4.61)

Finally, the linearized model for δq is obtain by replacing the result from Equation (4.61) in Equation

(4.60):

9δ~q “ ´rω̂ˆsδ~q`
1

2
∆~ω (4.62a)

δ 9q4 “ 0 (4.62b)
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The first-order approximation assumes that the error quaternion is very small with δq4 » 1 constant,

being the estimated attitude quaternion close to the true quaternion and allowing to reduce the order

of the system by one state [10]. Equation (4.62a) is going to be re-written using again the small-angle

approximation δ~q “ δ~θ{2, yielding
9
δ~θ “ ´rω̂ˆsδ~θ `∆~ω (4.63)

The angular velocity ~ω will be measured using gyroscopes sensors. The sensor model, assuming a

three-axis rate-integrating gyro, is given by the first-order Markov process [10]:

~ωptq “ ω̄ptq ´ ~βptq ´ ~ηvptq (4.64a)

9~βptq “ ~ηuptq (4.64b)

where ω̄ptq is the measured angular velocity, ~βptq is the gyroscope bias vector, and ~ηvptq and ~ηuptq are

zero-mean Gaussian white-noise processes with spectral densities given by σ2
vI3 and σ2

uI3 respectively.

The parameters σv and σu are known as the Angular Random Walk (ARW) and Rate Random Walk

(RRW) respectively. The error angular velocity ∆~ω from Equation (4.58) can now be written as

∆~ω “ ´∆~β ´ ~ηv (4.65)

with ∆~β “ ~β´ β̂ by using ω̂ “ ω̄´ β̂ when taking the expectation of Equation (4.64a). The bias error ∆~β

together with the quaternion error δ~θ will make the new state x “

„

´

δ~θ
¯J ´

∆~β
¯J

J

to be estimated

and whose dynamics are given by

9x “

»

–

9
δ~θ

9
∆~β

fi

fl “

»

–

´rω̂ˆsδ~θ ´∆~β ´ ~ηv

~ηu

fi

fl (4.66)

The dynamics of the estimated state x̂ are then given by

9̂x “ Et 9xu “

»

–

´rω̂ˆsδθ̂ ´ pβ̂ ´ β̂q

~0

fi

fl “ 06 (4.67)

where the last equality was obtained by noting that by definition (Equation (4.50))

δq̂ “ Etδqu “ q̂b q̂´1 “

»

–

~03

1

fi

flñ δθ̂ “ ~0 (4.68)

Equation (4.67) means that in the propagation stage, the estimated state will remain constant. Since

by definition x̂ “ 06, by using the result from Equation (4.68) and by noting that ∆β̂ “ β̂ ´ β̂ “ ~0, the

estimated quaternion and bias error will remain constant and equal to zero in the prediction step. This

result is the key feature of the MEKF. The MEKF propagates the global variables to the time of the next

representation while the error variables (defined by state x) do not need to be propagated because they

are identically zero over the propagation step. The update stage updates the error variables which will
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then be used to update the global variables q and ~β [9]. The MEKF error model can thus be written as

9ε´ptq “ Fptqε´ptq `Gptqwptq (4.69)

where ε´ptq “ x ´ x̂´ “
”

δ~θ
J

∆~β
J
ıJ

is the 6 ˆ 1 error state vector and wptq “
”

~ηJv ~ηJu

ıJ

is the

6 ˆ 1 process noise vector. The dynamics and process noise distribution 6 ˆ 6 matrices Fptq and Gptq

and the 6ˆ 6 covariance matrix Qptq of wptq are given respectively by

Fptq “

»

–

´rω̂ptqˆs ´I3

03ˆ3 03ˆ3

fi

fl Gptq “

»

–

´I3 03ˆ3

03ˆ3 I3

fi

fl Qptq “

»

–

σ2
vI3 03ˆ3

03ˆ3 σ2
uI3

fi

fl (4.70)

Equation (4.69) is similar to the one used to express the error for the EKF, Equation (4.39). From here on

the development of this filter follows from the EKF, namely the determination of the updated covariance

matrix P`k , Equation (4.47), and the determination of the Kalman gain matrix Kk, Equation (4.46). The

updated state variables δθ̂
`

and ∆~β
`

are simply given by

»

–

δθ̂
`

k

∆β̂
`

k

fi

fl “

»

–

~0

~0

fi

fl`Kk

“

yk ´ h
`

x̂´k
˘‰

(4.71)

The update of the estimated gyro bias and angular velocity are given by

β̂
`

k “ β̂
´

k `∆~β
`

k (4.72)

ω̂`k “ ω̄k ´ β̂
`

k (4.73)

while the update of the global attitude representation, the attitude quaternion, is performed by two steps:

q̂1 “

»

–

1
2δθ̂

`

k

1

fi

flb q̂´k (4.74)

q̂`k “ q̂1{
∥∥q̂1

∥∥ (4.75)

The final step consists on finding yk and the sensitivity matrix Hk. The measurement vector ~yk follows

the formulation of Equation (4.31) and is given by

~yk “ ~hpxkq ` ~vk “ Apqq~zI

∣∣∣∣
tk

` ~vk, vk „ N p0,Rkq Rk “ σ2
yI3 (4.76)

where ~zI is a measurement vector given by the measurement model and Rk was defined assuming that

the measurement errors are isotropic [9] with σy the noise standard deviation of the sensor. By definition

(Equation (4.50)):

Apqq “ ApδqqApq̂´q “
´

I3 ´
”

δ~θˆ
ı¯

Apq̂´q (4.77)

where the first-order approximation for Apδqq is given by Equation (3.59) by using δ~q “ δ~θ{2. The lin-

earized observation vector ~hpxkq is then given by
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~hpxkq » Apq̂´q~zI

∣∣∣∣
tk

`

!

“

Apq̂´q~zI
‰

ˆ δ~θ
)

∣∣∣∣
tk

(4.78)

The sensitivity matrix is then obtained from Equation (4.36) and is given by

Hkpx̂
´
k q “

”

rpApq̂´q~zIqˆs 03ˆ3

ı

∣∣∣∣
tk

(4.79)

The observation vector ~hpx̂´k q used in Equation (4.71) is given by

~hpx̂´k q “ Apq̂´q~zI

∣∣∣∣
tk

(4.80)

since δθ̂
´

k “
~0. For the update stage described here, only a single measurement was considered. This

is not a concern since the MEKF update is linear and so the principle of superposition can be used. The

update stage can thus be run repeatedly for each measurement at a time, before the next propagation

stage. This is known as Murrell’s method [10]. In order to obtain the updated covariance matrix P`k and

the updated attitude quaternion q̂`k , it is first necessary to propagate their values. This can be done

by numerically integrating Equations (4.41) and (4.54b) respectively or by using a discrete propagation

technique as done in this work. The discrete propagation of the quaternion from Equation (4.54b) is

found using a power series approach [10]. The propagated attitude quaternion is then given by

q̂´k`1 “ Ωpω̂`k qq̂
`
k (4.81)

where

Ωpω̂`k q “

»

—

—

–

cos

ˆ

1

2

∥∥ω̂`k ∥∥∆t

˙

I3 ´
”

~ψ
`

k ˆ

ı

~ψ
`

k

´

´

~ψ
`

k

¯J

cos

ˆ

1

2

∥∥ω̂`k ∥∥∆t

˙

fi

ffi

ffi

fl

and ~ψ
`

k “

sin

ˆ

1

2

∥∥ω̂`k ∥∥∆t

˙

ω̂`k∥∥ω̂`k ∥∥
(4.82)

where the ` and ´ signs were used once again to indicate the post-update and pre-update estimation

stage and ∆t is the sampling time of the gyro. Given the post-update estimate of the gyro bias β̂
`

k , and

since 9̂
β “ ~0 (Equation (4.64b)), the propagated gyro bias β̂k`1 is given in discrete-time by

β̂
´

k`1 “ β̂
`

k (4.83)

The discrete-time propagation of the covariance matrix P is given by

P´k`1 “ ΦkP
`
k ΦJk ` ΓkQkΓ

J
k (4.84)

with Γk given by

Γk “

»

–

´I3 03ˆ3

03ˆ3 I3

fi

fl (4.85)
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The 6 ˆ 6 discrete error-state transition matrix Φk can also be derived using a power series approach

[10]:

Φk “

»

–

Φ11 Φ12

Φ21 Φ22

fi

fl (4.86)

with

Φ11 “ I3 ´
“

ω̂`k ˆ
‰ sin

`
∥∥ω̂`k ∥∥∆t

˘∥∥ω̂`k ∥∥ `
“

ω̂`k ˆ
‰ “

ω̂`k ˆ
‰ 1´ cos

`
∥∥ω̂`k ∥∥∆t

˘∥∥ω̂`k ∥∥2 (4.87a)

Φ12 “
“

ω̂`k ˆ
‰ 1´ cos

`
∥∥ω̂`k ∥∥∆t

˘∥∥ω̂`k ∥∥2 ´ I3∆t´
“

ω̂`k ˆ
‰ “

ω̂`k ˆ
‰

∥∥ω̂`k ∥∥∆t´ sin
`
∥∥ω̂`k ∥∥∆t

˘∥∥ω̂`k ∥∥3 (4.87b)

Φ21 “ 03ˆ3 (4.87c)

Φ22 “ I3 (4.87d)

The discrete process noise covariance Qk is given by

Qk “

»

—

—

–

ˆ

σ2
v∆t`

1

3
σ2
u∆t3

˙

I3

ˆ

1

2
σ2
u∆t2

˙

I3
ˆ

1

2
σ2
u∆t2

˙

I3
`

σ2
u∆t

˘

I3

fi

ffi

ffi

fl

(4.88)

The implementation of the MEKF is given under the form of a flowchart by Figure A.6 in Appendix A.

4.2.2 Magnetometer Calibration Extended Kalman Filter (MCEKF)

The better the accuracy of the attitude determination sensors is, the better is going to be the attitude

estimate. In order to improve the attitude accuracy obtained using the magnetometers of the ORCASat,

the MCEKF was implemented. The magnetometer measurements are going to be modeled as [9]

~BMk
“ pI3 `Dq´1pOJAM

Rk
~BRk

` ~b` ~νkq, ~νk „ N p0,Σkq (4.89)

where ~BMk
is the magnetic field measured by the magnetometer at time t “ tk, ~BRk

is the corresponding

model of the geomagnetic field in a chosen reference frame such as frame E or frame I from Section

2.1, AM
Rk

is the unknown attitude matrix of the magnetometer frame M with respect to the reference

frame R, D is a fully-populated 3 ˆ 3 matrix of scale factors and non-orthogonality corrections, O is an

orthogonal matrix, ~b is the magnetometer bias vector and ~νk is the measurement noise vector which

is assumed to be a zero-mean Gaussian process with covariance Σk. Since the attitude matrix AM
Rk

is unknown, the parameters of O cannot be determined. The algorithm presented here assumes that

the matrix D is symmetric since any skew-symmetric contribution is equivalent to a rotation that can be

absorbed in O [9]. An attitude independent approach is possible by computing

yk “
∥∥∥~BMk

∥∥∥2 ´ ∥∥∥~BRk

∥∥∥2 (4.90)
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In order to eliminate the dependence on the attitude matrix and on matrix O, Equation (4.89) can be

written as

pI3 `Dq~BMk
´ ~b´ ~νk “ OJAM

Rk
~BRk

(4.91)

Taking the square norm of both sides of the previous equation gives

∥∥∥pI3 `Dq~BMk
´ ~b´ ~νk

∥∥∥2 “ ∥∥∥pI3 `Dq~BMk

∥∥∥2 ´ 2
”

pI3 `Dq~BMk

ı

¨ p~b` ~νkq

`

∥∥∥~b∥∥∥2 ` ‖ ~νk‖2 ` 2~b ¨ ~νk “
∥∥∥~BRk

∥∥∥2 (4.92)

Substituting Equation (4.92) in Equation (4.90) gives

yk “ p~BMk
qJ~BMk

´

”

pI3 `Dq~BMk

ıJ ”

pI3 `Dq~BMk

ı

` 2
”

pI3 `Dq~BMk

ı

¨ ~b´
∥∥∥~b∥∥∥2

` 2
”

pI3 `Dq~BMk
´ ~b

ı

¨ ~νk ´ ‖~νk‖2 (4.93)

The first 2 terms on the right-hand side can be grouped and simplified by using the symmetric property

of D giving

yk “ ´p~BMk
qJp2D`D2q~BMk

` 2p~BMk
qJpI3 `Dq~b´

∥∥∥~b∥∥∥2 ` vk “ hkpxq ` vk (4.94)

where the effective noise vk given by

vk “ 2
”

pI3 `Dq ~BMk
´ ~b

ıJ

~νk ´ ‖~νk‖2 (4.95)

is approximately Gaussian with variance σ2
k given by

σ2
k “ Etv2ku ´ E

2tvku “ 4
”

pI3 `Dq~BMk
´ ~b

ıJ

Σk

”

pI3 `Dq~BMk
´ ~b

ı

` 2 tr Σ2
k (4.96)

The system state vector x is defined as

x “
”

~bJ DJ
v

ıJ

(4.97)

with Dv defined as

Dv “

”

D11 D22 D33 D12 D13 D23

ıJ

(4.98)

where Dij is the element from the i’th row and j’th column of matrix D. Since the state vector is constant

and no noise appears in the state model, 9x “ 09 ñ 9̂x “ 09, meaning that in the propagation stage the

estimated state x̂ will remain constant and equal to the value from the previous update step: x̂´k “ x̂`k´1.

The dynamics of the propagation error (Equation (4.38)) is given by 9ε´ “ 9x´ 9̂x´ “ 09, meaning that the

covariance matrix P will also remain constant in the propagation stage (Equation (4.41)) and equal to

the value from the previous update step: P´k “ P`k´1. The EKF equations, Eqs. (4.48) and (4.49), are
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thus reduced to

Kk “ P`k´1H
J
k px̂

`
k´1q

“

Hkpx̂
`
k´1qP

`
k´1H

J
k px̂

`
k´1q ` σ

2
kpx̂

`
k´1q

‰´1
(4.99)

x̂`k “ x̂`k´1 `Kk

“

yk ´ hkpx̂
`
k´1q

‰

(4.100)

P`k “
“

I9 ´KkHkpx̂
`
k´1q

‰

P`k´1 (4.101)

The first term on the right-hand side of Equation (4.94), ´p~BMk
qJp2D ` D2q~BMk

, can be written as

´p~BMk
qJp2D`D2q~BMk

“ ´SJkEv with Ev and Sk defined as

Ev “

”

E11 E22 E33 E12 E13 E23

ıJ

(4.102)

Sk “
”

B2
1 B2

2 B2
3 2B1B2 2B1B3 2B2B3

ıJ

(4.103)

The vector Ev is defined as a function of the parameters of the matrix E “ 2D`D2 with Eij the element

from the i’th row and j’th column of E. The vector S is function of the measured geomagnetic field where

Bi is the i’th element of ~BMk
. The sensitivity matrix Hkpx̂

`
k´1q can thus be given by

Hkpx̂
`
k´1q “

Bhpxq

Bx

∣∣∣∣
x̂`k´1,tk

“

”

2p~BMk
qJpI3 ` D̂`

k´1q ´ 2pb̂`k´1q
J ´SJkMk ` 2Jk

ı

(4.104)

where the 1ˆ 6 row vector Jk and the 6ˆ 6 matrix Mk are given respectively by

Jk “
”

B1b̂1 B2b̂2 B3b̂3 B1b̂2 `B2b̂1 B1b̂3 `B3b̂1 B2b̂3 `B3b̂2

ı

(4.105)

Mk “ 2I6 `

»

—

—

—

—

—

—

—

—

—

—

—

—

–

2D̂11 0 0 2D̂12 2D̂13 0

0 2D̂22 0 2D̂12 0 2D̂23

0 0 2D̂33 0 2D̂13 2D̂23

D̂12 D̂12 0 D̂11 ` D̂22 D̂23 D̂13

D̂13 0 D̂13 D̂23 D̂11 ` D̂33 D̂12

0 D̂23 D̂23 D̂13 D̂12 D̂22 ` D̂33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.106)

with b̂i the components of the estimated bias vector b̂`k´1 and with D̂ij the components of the estimated

matrix D̂`
k´1. The vectors Dv and Ev defined in Equations (4.98) and (4.102) could have been de-

fined as different functions of matrices D and E respectively. The filter equations, Eqs. (4.99), (4.100),

and (4.101) would remain the same but the quantities S, J, and M would have got a different expres-

sion to accommodate the different vectors Dv and Ev. Nonetheless, the estimated bias vector b̂ and

the estimated scale factors and non-orthogonality corrections matrix D̂ would be the same. Lastly, an

approximate estimation for the measured magnetic field B̂Mk
can be given by neglecting the effect of O:

B̂Mk
“ pI3 ` D̂q~BMk

´ b̂ (4.107)

where B̂Mk
” AM

Rk

~BRk
. The implementation of the MCEKF is given under the form of a flowchart in

Appendix A by Figure A.4.
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Chapter 5

Attitude Control

In this chapter, the different algorithms used to achieve 3-axis Earth-pointing stabilization as well as

the detumbling controller used in the ORCASat are presented. In Section 5.1, a sliding mode controller

will be developed. In Section 5.2, three linear controllers, which make use of the linear model of the

ORCASat outlined in Section 3.5, are developed. In Section 5.3, the detumbling controller is outlined

and finally, in Section 5.4, the implementation of the different controllers is described.

5.1 Sliding Mode Controller (SMC)

The objective of the pointing controllers is 3 axis-stabilization Earth pointing. This is done by making

the body frame B coincide with the orbit frame O, i.e. by making the angular velocity ~ωB{O converge

to ~0 and the attitude quaternion qBO converge to the identity quaternion Iq. The attitude quaternion qBO

represents the rotation error between the body frame and the desired orbit or LVLH frame being thus

from here on denoted by qe. The quaternion error qe is given by

qe ” qBO “ qBI b
`

qOI
˘´1

“
`

qOI
˘´1

d qBI “

»

—

—

—

—

—

—

–

qc4 qc3 ´qc2 ´qc1

´qc3 qc4 qc1 ´qc2

qc2 ´qc1 qc4 ´qc3

qc1 qc2 qc3 qc1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.1)

where qi and qci with i “ 1, 2, 3, 4 are respectively the components of qBI and qOI . The c from qci stands

for commanded quaternion since qOI is the attitude quaternion that the spacecraft should follow. The

commanded quaternion can be obtained from qIO using the inverse attitude quaternion property given

by Equations (2.31) and (2.28). The attitude quaternion qIO, in turn, can be obtained from the DCM AI
O

defined in Equation (2.5) by using Equation (2.37). In analogy with the error quaternion qe, the angular

velocity ~ωB{O is going to be denoted by ~ωe since it represents the error of the body angular velocity with

respect to the desired angular velocity of the orbit frame O. The error angular velocity ~ωe is given in the

body frame by

~ωe ” ~ω
B{O
B “ ~ω

B{I
B ´ ~ω

O{I
B (5.2)
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where the angular velocity of the orbit frame with respect to the inertial frame ~ωO{IB is given by [9]

~ω
O{I
B “ AB

O~ω
O{I
O “ AB

O

»

—

—

—

–

0

´‖~rI ˆ ~vI‖{‖~rI‖2

‖~rI‖pô2I ¨
9~vIq{‖~rI ˆ ~vI‖

fi

ffi

ffi

ffi

fl

(5.3)

where AB
O “ AB

I AI
O with AB

I obtained from qBI using Equation (2.36) and with AI
O obtained from

Equation (2.5). The vectors ~rI and ~vI are the spacecraft position and velocity in the ECI frame I and

ô2I is given by Equation (2.6b).

The sliding mode controller presented is adapted from the work developed in [40]. The design of this

controller will be split in two phases. The first corresponds to the design of the sliding manifold, and the

second to the design of the sliding condition. The sliding condition can be seen as a reaching phase

where the controller makes the system to reach the sliding manifold from an arbitrary state. The sliding

manifold in turn is the condition that makes the system to converge to the reference attitude.

5.1.1 Sliding Manifold Design

The sliding variable ~s will be defined as [40]

~s “ ~ωe `K~qe (5.4)

whereK is a 3ˆ3 positive definite matrix. In this work,K will be defined asK “ KI3, with K a positive

gain, without any loss of generality. The sliding manifold S is defined as the set of values of ~qe and ~ωe

such that ~s “ ~0:
S “ t~qe, ~ωe : ~s “ ~0u (5.5)

This sliding variable ~s can be shown to guarantee the convergence of ~qe to zero and qe4 to one when

the system is in the sliding manifold. By considering the following candidate Lyapunov function

V “ ~qJe ~qe ` p1´ qe4q
2 “ 1´ q2e4 ` 1´ 2qe4 ` q

2
e4 “ 2p1´ qe4q (5.6)

where the unit norm property of the attitude quaternion qJq “ 1 was used, and taking its derivative with

respect to time while using the quaternion kinematics from Equation (3.9) gives

9V “ ´2 9qe4 “ ~ωe ¨ ~qe “ ~ωJe ~qe (5.7)

When the system is in the sliding manifold (~s “ 0) Equation (5.4) writes

~ωe “ ´K~qe (5.8)

By substituting the previous equation in Eq. (5.7), the derivative of the candidate Lyapunov function

gives
9V “ ´~qJeK~qe (5.9)
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which is negative definite, proving, according to Theorem 3, that the equilibrium ~ωe “ ~0 and

qe “
”

0 0 0 1
ıJ

is globally asymptotically stable if the spacecraft is on the sliding manifold S.

5.1.2 Sliding Condition Design

As stated before, the objective of the sliding condition is to produce the desired control torque to turn

the system’s trajectory towards the sliding manifold. In order to determine the desired control torque, the

representation of the spacecraft motion in the space of the sliding variable is going to be computed by

differentiating the sliding variable ~s from Equation (5.4) with respect to time yielding

9~s “ 9~ωe `K 9~qe “ 9~ω
B{I
B ´ 9AB

O~ω
O{I
O ´AB

O
9~ω
O{I
O `

1

2
K p~ωeqe4 ´ ~ωe ˆ ~qeq (5.10)

where Equations (5.2) and (3.9) were used. By multiplying each side of Equation (5.10) by the space-

craft’s inertia matrix J ” JB and by using the ORCASat’s dynamic equation, Eq. (3.26), while neglecting

the disturbance torques and considering that the momentum wheel is in nominal mode, 9~hsB “ 0, gives

J 9~s “
´

J~ω
B{I
B ` ~hsB

¯

ˆ ~ω
B{I
B ` J

”

~ωeˆ
ı

AB
O~ω

O{I
O ´ JAB

O
9~ω
O{I
O `

1

2
JK p~ωeqe4 ´ ~ωe ˆ ~qeq ` ~u (5.11)

If the spacecraft is in the sliding manifold, in order to keep it there, i.e., to satisfy the condition 9~s “ ~0, the

control torque must be equal to an equivalent torque (~u “ ~τ eq) defined as

~τ eq “ ´
´

J~ω
B{I
B ` ~hsB

¯

ˆ ~ω
B{I
B ´ J

”

~ωeˆ
ı

AB
O~ω

O{I
O ` JAB

O
9~ω
O{I
O ´

1

2
JK p~ωeqe4 ´ ~ωe ˆ ~qeq (5.12)

where 9~ω
O{I
O is calculated numerically from ~ω

O{I
O . If the satellite is not in the sliding manifold, ~s ‰ ~0, then

the control torque must be equal to the equivalent torque from Equation (5.12) plus an extra term, the

sliding condition, to make the sliding variable ~s converge to zero. The desired torque is given by

~τ des “ ~τ eq ´ λ~s (5.13)

where λ is a positive constant number.

The ORCASat is a magnetically actuated spacecraft and as such, it cannot produce torque indepen-

dently in any direction, therefore, before investigating the stability of the sliding condition, the magnetic

control torque produced by the magnetorquers is going to be developed. The control torque ~u produced

can be written as

~u “ ~mctrl ˆ ~BB “

´

~m‖ ` ~mK
¯

ˆ ~BB “ ~mK ˆ ~BB (5.14)

where ~BB is the local geomagnetic field written in body frame coordinates and ~mctrl is the dipole mo-

ment generated by the magnetorquers. The vectors ~m‖ and ~mK are the components of the dipole

moment ~mctrl parallel and perpendicular to ~BB respectively. It can be seen by Equation (5.14) that the

control torque is always perpendicular to the local magnetic field ~BB and to the dipole moment ~mctrl

and that the only component of ~mctrl responsible for producing torque is the component perpendicular

49



to ~BB . By premultiplying the previous equation by the local geomagnetic field and using the triple cross

product rule ~aˆ p~bˆ ~cq “ ~bp~a ¨ ~cq ´ ~cp~a ¨ ~bq gives

~BB ˆ ~u “ ~BB ˆ

´

~mK ˆ ~BB

¯

“ ~mK
´

~BB ¨ ~BB

¯

´ ~BB

´

~BB ¨ ~m
K
¯

“ ~mK
∥∥∥~BB

∥∥∥2 (5.15)

By making ~u “ ~τ des, an expression for the magnetorquers’ magnetic dipole moment control law can be

found:

~mctrl “ ~mK “
~BB ˆ ~τ des∥∥∥~BB

∥∥∥2 (5.16)

It is possible to see that if the desired torque ~τ des is along the same direction as the local geomag-

netic field, the dipole moment ~mctrl “ ~0 and no control torque ~u will be generated due to the lack of

controllability in the direction of the magnetic field. On the other hand, if the desired control torque is

perpendicular to the local geomagnetic field, the control torque complies with the desired torque and

Equation (5.16) is exact.

The component of the desired control torque which is parallel to the sliding variable ~s is the only

component responsible for decreasing the distance of the satellite trajectory to the sliding manifold,

therefore, the control torque only needs to compensate for the component of the desired torque which

is parallel to ~s [40]. Consider the following Lyapunov candidate function:

V “ 1

2
~sJJ~s (5.17)

whose derivative with respect to time is

9V “ 1

2
p 9~sJJ~s`~sJJ 9~sq “

1

2

„

´

9~sJJ~s
¯J

`~sJJ 9~s



“ ~sJJ 9~s (5.18)

where the second equality is true due to the fact that the product 9~sJJ~s is a scalar and the transpose of

a scalar is equal to that same scalar. By using Equation (5.11) in Equation (5.18), the previous equation

gets
9V “ ~sJp´~τ eq ` ~uq “ ~sJp´~τ eq ` ~τ ‖

eq ´ λ~sq “ ~s
Jp´~τKeq ´ λ~sq “ ~́sJλ~s (5.19)

where the equivalent torque ~τ eq “ ~τ ‖
eq ` ~τKeq was decomposed into two components, a component

~τ ‖
eq parallel to the sliding variable ~s, and a component ~τKeq perpendicular to the vector ~s. The control

torque defined only compensates for the parallel component of the desired torque: ~u “ ~τ
‖
des “ ~τ ‖

eq ´λ~s.

The time derivative of the candidate Lyapunov function from Equation (5.19) is negative definite, which

according to Theorem 3 proves that the equilibrium ~s “ ~0 is global asymptotically stable when the

control torque only compensates for the parallel component of the desired torque. The expression for

the magnetorquers’ magnetic dipole moment, Equation (5.16), is then rewritten as

~mctrl “
~BB ˆ ~τ

‖
des∥∥∥~BB

∥∥∥2 ~τ
‖
des “

~τ des ¨~s

‖~s‖2
~s “

~τ eq ¨~s

‖~s‖2
~s´ λ~s “ ~τ ‖

eq ´ λ~s (5.20)
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The stability of the sliding condition from Equation (5.13) can now be investigated by using the mag-

netic actuation law from Equation (5.20). By considering again the candidate Lyapunov function from

Equation (5.17) and by substituting Equation (5.11), while using the results from Equations (5.14) and

(5.20), in the time derivative of the candidate Lyapunov function given by Equation (5.18) yields

9V “ ~sJp´~τ eq ` ~uq “ ~s ¨

¨

˚

˝

´~τ eq `
~BB ˆ ~τ

‖
eq∥∥∥~BB

∥∥∥2 ˆ ~BB ´ λ
~BB ˆ~s∥∥∥~BB

∥∥∥2 ˆ ~BB

˛

‹

‚

(5.21)

By using the scalar triple product or mixed product permutation property ~a ¨ p~b ˆ ~cq “ ~b ¨ p~c ˆ ~aq in the

last term of the previous equation gives

9V “ ~́s ¨ ~τ eq `~s ¨
~BB ˆ ~τ

‖
eq∥∥∥~BB

∥∥∥2 ˆ ~BB ´
λ∥∥∥~B∥∥∥2

´

~BB ˆ~s
¯

¨

´

~BB ˆ~s
¯

(5.22)

The last term on the right-hand side, which corresponds to the term of the sliding condition, is negative

semidefinite, being equal to zero when ~BB and ~s are parallel. Since the geomagnetic field changes

periodically in the orbit frame O, it can be proved that the sliding condition is globally asymptotically

stable to the equilibrium ~s “ ~0 [40]. Note that if the sliding condition was discontinuous, using the sign

function for instance, such that ~τ ‖
des “ ~τ ‖

eq ´ λ signp~sq, the term due to the sliding condition would write

´
λ∥∥∥~BB

∥∥∥2
´

~BB ˆ signp~sq
¯

¨

´

~BB ˆ~s
¯

where it can be seen that there can be vectors ~s and ~BB such that p~BB ˆ signp~sqq ¨ p~BB ˆ~sq ă 0 making
9V ą 0 and therefore the sliding condition cannot be proved stable. The value of λ should be chosen

such that the sliding condition can be the dominant term of Equation (5.22) so that 9V can be negative.

In practice, in spite of the controller developed is not guaranteed to be Lyapunov stable, due to the

periodic nature of the magnetic field and the fact that the first two terms of Equation (5.22) can be made

relatively small by choosing an appropriate value for λ, this controller has proven to be stable in all the

simulations tested as it will be seen in Chapter 7. It will also be seen in Chapter 7 that too low values

of λ will increase the oscillations of this controller as well as the pointing error due to the fact that, as

explained before, the term corresponding to the sliding condition becomes less dominant as the value

of λ decreases.

5.2 Linear Quadratic Regulator (LQR)

In this section, three types of LQR controllers are going to be presented. The first to be presented

is the Infinite Horizon Controller (IHC) (Section 5.2.1), the second is the Finite Horizon Controller (FHC)

(Section 5.2.2) and the last controller presented is the Constant Gain Controller (CGC) (Section 5.2.3).

All these algorithms will take advantage of the fact that the variation of the geomagnetic field in the orbital
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frame O is approximately periodic with a period equal to the spacecraft’s orbital period Torb as seen in

Figure 5.1a. These controllers will make use of the linear model developed in Section 3.5 and repeated

here again as

9x “ Ax`

»

–

J´1~u

03ˆ3

fi

fl (5.23)

where x and A are defined in Equations (3.67) and (3.69) respectively and the control torque ~u in

Equation (3.71). As seen before, in Equation (5.14), the magnetic moment ~m‖ generated in the direction

parallel to the local geomagnetic field vector has no influence in the satellite motion. As such, and

following the recommendation encountered in reference [40], the magnetic dipole moment ~mctrl is going

to be mapped using a new control signal ~mcmd according to Equation (5.24), where the subscript cmd

stands for commanded dipole moment. This mapping will allow us to obtain a more power efficient

controller.
~mcmd ÞÑ ~mctrl : ~mctrl “

~mcmd ˆ ~BB∥∥∥~BB

∥∥∥ “ ´
~BB ˆ ~mcmd∥∥∥~BB

∥∥∥ (5.24)

Using the new control signal, ~mcmd, the control torque ~u from Equation (3.71) can be written as

~u “ ´
1∥∥∥~BO

∥∥∥
´

~BO ˆ ~mcmd

¯

ˆ ~BO “
1∥∥∥~BO

∥∥∥ ~BO ˆ

´

~BO ˆ ~mcmd

¯

“
1∥∥∥~BO

∥∥∥
”

~BOˆ

ı”

~BOˆ

ı

~mcmd (5.25)

where ~BB was replaced by ~BO according to the development done in Equation (3.71). The linear model

for the ORCASat is then given by

9xptq “ Axptq `Bptq~uptq (5.26)

where the control vector ~uptq and the control matrix Bptq are now given by

~uptq “ ~mcmdptq (5.27)

Bptq “

»

—

—

–

J´1∥∥∥~BOptq
∥∥∥
”

~BOptqˆ
ı”

~BOptqˆ
ı

03ˆ3

fi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

J´1∥∥∥~BOptq
∥∥∥
»

—

—

—

–

´B2
2 ´B

2
3 B1B2 B1B3

B1B2 ´B2
1 ´B

2
3 B2B3

B1B3 B2B3 ´B2
1 ´B

2
2

fi

ffi

ffi

ffi

fl

03ˆ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.28)

where Bi are the components of the local geomagnetic field vector ~BOptq “
”

B1ptq B2ptq B3ptq
ıJ

.

5.2.1 Infinite Horizon Controller (IHC)

Due to the periodic nature of the geomagnetic field seen from the orbit frame, the linearized model

of the satellite can be considered as periodic. It is, however, necessary to find an ideally periodic

counterpart of the real geomagnetic field. This is done by averaging the geomagnetic field over N “ 15

orbits which are contained in a 24h period

~Bavg
O ptq “

1

N

N
ÿ

i“1

~Bi
Optq (5.29)
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(a) True geomagnetic field.
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(b) Averaged geomagnetic field.

Figure 5.1: Geomagnetic field vector in the ORCASat’s orbit viewed from the orbit frame O during a
24h period in 15{09{2019. The true geomagnetic field was obtained using the 2015 World Magnetic
Model (WMM) [58].

where ~Bi
Optq is the magnetic field of each orbit within the 24h period corresponding to the time interval

t P rτ `pi´1qTorb; τ ` iTorbr. Figure 5.1b depicts the averaged geomagnetic field ~Bavg
O ptq. The resultant

linear periodic system is given by

9xptq “ Axptq ` B̂ptq~uptq (5.30)

where B̂ptq is given by Equation (5.28) after substituting the magnetic field ~BOptq by the magnetic field
~Bavg
O ptq from Equation (5.29). The IHC consists of a time-varying gain controller that relies on the

minimization of the cost function

J p~uptqq “
1

2

ż 8

τ

”

xJptqQptqxptq ` ~uJptq~uptq
ı

dt (5.31)

where the error weighted matrixQ is a real positive semidefinite nˆn matrix, being n “ 6 the dimension

of the state vector x. The control law is then given by [59]

~uptq “ ~mcmdptq “ ´Kptqxptq “ ´B̂
J
ptqP̂ ptqxptq (5.32)

with

P̂ ptq “
8
ÿ

i“0

P8pt´ iTorbq (5.33)

where, according to [40], the solution P8ptq is obtained by solving the differential equation of the follow-

ing iterative process for an arbitrary final condition:

9P i`1ptq “ ´P i`1ptqAiptq ´A
J
i ptqP i`1ptq ´K

J
i ptqKiptq ´Qptq (5.34)

with

Kiptq “ B̂
J
ptqP iptq (5.35)

Aiptq “ A´ B̂ptqKiptq (5.36)
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The first iteration of Equation (5.34) is done by solving the regular Differential Riccati Equation (DRE)

given by Equation (5.39) using as final condition P f1 “ Q. Due to the solution periodicity, the following

iteration steps (using Equation (5.34)) were done using as final condition P fi`1 “ P ipτq. Finally, the

control dipole moment ~mctrl is obtained from the control vector ~mcmd according to Equation (5.24).

5.2.2 Finite Horizon Controller (FHC)

Instead of using the periodic counterpart of the Earth’s magnetic field vector, ~Bavg
O ptq, as done is the

IHC, the FHC proposes using the real geomagnetic field. For each orbit the FHC is the time-varying

gain controller that relies on the minimization of the following cost function:

J p~uptqq “
1

2
xJf P fxf `

1

2

ż τ`Torb

τ

”

xJptqQptqxptq ` ~uJptq~uptq
ı

dt (5.37)

where xf ” xpτ ` Torbq. The optimal control vector ~uptq is then given for each orbit (t P rτ ; τ ` Torbr) by

~uptq “ ~mcmdptq “ ´Kptqxptq “ ´B
J
ptqP ptqxptq (5.38)

where P is the solution of the DRE

9P ptq “ ´P ptqA´AJP ptq ` P ptqBptqBptqJP ptq ´Qptq (5.39)

with final condition

P pτ ` Torbq “ P f (5.40)

The control dipole moment ~mctrl is computed using the control vector ~mcmd according to Equation

(5.24). The final condition can be seen as a design parameter. However, the difference P f ´ P pτq

should be positive semidefinite to guarantee that P ptq is stabilizing and that the control law ~uptq “

´BJptqP ptqxptq is stable [40]. The method for finding P f in this work consisted of solving the Algebraic

Riccati Equation (ARE) present in Equation (5.45) for t “ τ ` Torb, i.e., by making B̄ “ Bpτ ` Torbq

in Equation (5.45). The solution obtained for the Riccati matrix, PARE , is then multiplied by a positive

scalar gain K:

P f “ KPARE (5.41)

5.2.3 Constant Gain Controller (CGC)

The CGC is developed with the aim of avoiding all the necessary computations required by the two

previous controllers. The first step of this controller consists of converting the linear periodic time-variant

system defined in Equation (5.30) to a linear time-invariant system. This is done by averaging the

periodic system matrix Aptq and the periodic control matrix B̂ptq for one orbit of period Torb giving

9xptq “

˜

1

Torb

ż τ`Torb

τ

Aptqdt

¸

xptq `

˜

1

Torb

ż τ`Torb

τ

B̂ptqdt

¸

~u “ Āxptq ` B̄~uptq (5.42)

54



In the ORCASat case, since the state matrix A is already time-invariant, Ā “ A. The control vector is

obtained by minimizing the following cost function

J p~uptqq “
1

2

ż 8

τ

“

xptqJQxptq ` ~uptqJ~uptq
‰

dt (5.43)

The optimal control vector ~uptq is then given by

~uptq “ ~mcmdptq “ ´Kxptq “ ´B̄
J
Pxptq (5.44)

where P is obtained by solving the ARE

PĀ` Ā
J
P ´ PB̄B̄

J
P `Q “ 0 (5.45)

Finally, the control dipole moment ~mctrl is computed according to Equation (5.24).

5.3 Detumbling Controller

The proposed control law for the detumbling controller is found in [60]. The control dipole moment

~mctrl is given by

~mctrl “ ´
Kd∥∥∥~BB

∥∥∥2 ~BB ˆ ~ω
B{I
B (5.46)

where Kd is a positive scalar gain. The resulting control torque ~u is then given by replacing the dipole

moment ~mctrl from Equation (5.46) into Equation (3.40) yielding

~u “ ´
Kd∥∥∥~BB

∥∥∥2
´

~BB ˆ ~ω
B{I
B

¯

ˆ ~BB “ ´Kd

´

I3 ´ B̂B̂J
¯

~ω
B{I
B (5.47)

where the last equality was obtained by expanding the triple cross product and by defining B̂ ”
~BB

‖~BB‖ .

Reference [60] also provides a method for computing the gain Kd:

Kd “
4π

Torb
p1` sin ξqJmin (5.48)

where Torb is the orbital period in seconds, ξ represents the inclination of the spacecraft orbit relative to

the geomagnetic equatorial plane and Jmin is the minimum principal moment of inertia of the spacecraft.

The stability of this controller can be proved by using the following candidate Lyapunov function and its

respective time derivative:

V “ 1

2
~ω
B{I
B ¨

´

JB~ω
B{I
B

¯

9V “ ~ω
B{I
B ¨

´

JB 9~ω
B{I
B

¯

(5.49)
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where 9V was obtained similarly to Equation (5.18). By using the dynamics equation, Eq. (3.26), 9V gives:

9V “ ~ω
B{I
B ¨

”

pJB~ω
B{I
B ` ~hsBq ˆ ~ω

B{I
B ` ~u

ı

“ ~ω
B{I
B ¨ ~u “

´

~ω
B{I
B

¯J

~u (5.50)

Using Equation (5.47) in the previous equation, the time derivative of V is

9V “ ´Kdp~ω
B{I
B qJpI3 ´ B̂B̂Jq~ω

B{I
B (5.51)

It is possible to see that 9V is negative semi-definite, having value 0 in the equilibrium point ~ωB{IB “ ~0 and

when the spacecraft angular velocity ~ωB{IB is parallel to ~B, ~ωB{IB “ ωB̂. In this last case, the magnetic

coils cannot deliver any torque component about the current spacecraft’s spin axis and thus they are not

able to decrease its angular speed. In practice, this last case is not a concern and the control law can

be proved global asymptotic stable [60].

5.4 Controllers Implementation

The differential equations given in this chapter to obtain the LQR gains, Equations (5.34) and (5.39),

were integrated backwards using the built-in Matlab ode solver ode45. The solution was computed for

every time point of the simulated geomagnetic field. The Matlab function interp1 was also used in order

for the ode45 solver to interpolate the time-dependent geomagnetic field during its internal steps. The

Riccati matrix solution P of the ARE represented by Equation (5.45), used for obtaining the gain K of

the CGC, was computed using the built-in Matlab function care. The Q matrix selected for the LQR

controllers is given by

Q “ KQ diag
´”

1000 1000 1000 1 1 1
ı¯

(5.52)

where KQ is a positive scalar gain and the diagonal matrix was chosen empirically. The geomagnetic

field ~BO was obtained in Matlab/Simulink using the 2015 WMM block by propagating the orbit of the

ORCASat. The orbital parameters are given in Table 7.1. All the Earth-pointing controllers used the

minimum rotation method where the quaternion error qe representing the minimum rotation path is the

one that has qe4 ą 0. This can be better understood by noting that the attitude quaternion qp~e, θq

corresponding to a short θ˝ rotation, with 0 ă θ ă 180˝ , qe4 ą 0, physically represents the same attitude

as the attitude quaternion qp´~e, 360´ θq corresponding to a long p360 ´ θq˝ rotation in the opposite

direction. Using Equation (2.16) it can be seen that qp~e, θq “ ´qp´~e, 360´θq. Therefore, if qe4 ă 0, then

the following operation is done:

qnewe “ ´qe (5.53)

where qnewe is the new attitude quaternion representing the attitude error. Although it has not been done

in this work, for simplicity reasons when testing the controllers in Matlab/Simulink, in a real application,

the gain matrix K of the IHC and FHC should be parameterized by the mean anomaly M such that

K “ KpMq. The implementation of the different control algorithms is summarized in Appendix A by

Figures A.2 and A.3 while the code used for the determination of the LQR gains is given in Appendix E.
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Chapter 6

Simulation Environment

In order to test and develop the ADCS of the ORCASat, a simulator was developed in Matlab/Simulink.

This simulator must be able to generate a truth-model capable of describing the satellite’s orbit motion

and attitude including realistic environmental models. It must also include sensor and actuator mod-

els that connect the estimation and control algorithms to the data generated by the truth-model. The

conception of this simulator had major contributions from previous Master’s students, namely Duarte

Rondão in [49] and Bernardo Lobo-Fernandes in [48]. In this thesis, the Simulink model was changed

and improved. The most important alterations are the following: The division between the ADCS soft-

ware and the simulator environment; Improvements on the sun sensor hardware model; Bug-fixing and

performance improvements; Implementation of the ADCS operation modes and routines; Implementa-

tion of the transient-state for the momentum wheel; Adaptation of the attitude estimation algorithms for

multiple sun sensor readings.

The simulator is divided into two major groups. The first group is responsible for the generation of the

data feeding the ADCS and comprises the Spacecraft Mechanics Simulator (SMS) block, described in

Section 6.1, the Sensor Model block, and the Actuator Model block, which are described in Section 6.2.

The second major group, which will be described in Section 6.3, is the ADCS environment where the

estimation and control algorithms were implemented. The ADCS environment also includes an onboard

Orbital Propagator as well as a block responsible for the transition between the different stages of the

ADCS, the ADCS Controller block.

6.1 Spacecraft Mechanics Simulator

The SMS block is responsible for applying the theory described in Chapter 3 to compute the motion

and propagate the attitude of the spacecraft in time. The orbital dynamics equation and the attitude

kinematics and dynamics equations, Equations (3.6), (3.9) and (3.26) respectively, are integrated giving

the orbital position and velocity of the spacecraft as well as its angular rates and attitude. The Julian date

and the different reference frames described in Section 2.1 are also computed in this block as well as

the different environmental models, such as the Earth’s magnetic field, the sun vector, the atmospheric
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model and the gravity model. The spacecraft’s perturbation torques and forces originated from these

environmental models are also computed in the SMS block. This block is also responsible for determin-

ing if the ORCASat is in eclipse or not by making use of a ray-sphere intersection method as described

in [49]. This method returns a Boolean flag, Lit, which will have value 0 if the CubeSat is in eclipse and

value 1 otherwise. The code used to implement this method is given in Appendix A by Figure A.1. The

different environmental models used and the respective references are displayed in Table 6.1.

Table 6.1: Environmental models used in the ADCS simulator.

Variable to compute Model used Reference

Earth’s magnetic field ~B World Magnetic Model (WMM) 2015 [58]
Sun vector ~s@ Jet Propulsion Laboratory (JPL) ephemeris model DE432t [61]
Atmospheric Density ρ NRLMSISE-001atmosphere model [62]
Earth’s gravity acceleration ∇U Earth Gravitational Model 2008 (EGM2008) [63]

6.2 Sensors and Actuators Models

6.2.1 Hardware Selection

The selection of the hardware to equip the ORCASat was made according to the trade-off analysis

in [64]. The chosen option consisted of a balanced approach between using Commercial Off-The-

Shelf (COTS) components and in-house made components. The philosophy of this choice consisted of

potential cost savings by developing some of the components in-house that have similar fidelity to more

costly commercial options. More details about the hardware selection can be found in [48].

Sensors

The sensor suite selected for the ORCASat includes four sun sensors, a magnetometer, a gyroscope,

and a GNSS receiver.

The chosen sun sensor is the Hyperion SS200. This sensor has flight heritage since 2018 and a

field of view up to 110˝ allowing for a smooth transition between measurements of two sun sensors in

adjacent faces of the CubeSat [65]. The noise standard deviation is 0.5˝ in the θ and φ angles shown in

Figure 6.2 and the sampling rate selected is 10Hz although it is capable of up to 100Hz. As stated before,

four sun sensors will be used in the ORCASat. This was the minimum number of sensors determined

by a simulation in STK2 to maintain full sensor visibility while in nadir pointing orientation for a one year

mission [66]. These sensors will be placed in the faces normal to the ˘b̂1 and ˘b̂2 body frame axes

defined in Figure 2.2.

The magnetometer and the gyroscope are included in the iNEMO LSM9DS1 IMU from STMicroelec-

tronics. This system provides a 3D digital linear acceleration sensor, a 3D digital angular rate sensor,

and a 3D digital magnetic sensor. The linear acceleration sensor won’t be used in the case of the

1US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE)
2https://www.agi.com/home
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ORCASat. The main characteristics taken from the datasheet [67] are the magnetometer’s measure-

ment range of ˘4G and the sensitivity of 0.14mG/LSB, the gyro’s measurement range of ˘245° s´1 and

the gyro’s sensitivity of 8.75mdps/LSB. Both of these sensors have a 16bit data output. The incorpora-

tion of these sensors in the ORCASat body was not defined at the time of the simulations presented in

the next chapter.

The GNSS receiver chosen for the ORCASat is the NovAtel OEM719 Multi-Frequency GNSS Re-

ceiver. This component was chosen due to its reasonable cost when compared to its competitors and

because it can be unlocked for orbital operations [48].

Actuators

The magnetorquer set will be built in-house, providing a cost-saving opportunity and will be con-

stituted by three orthogonal elements with equivalent characteristics oriented in each of the satellite

body axes. Two of the elements are ferromagnetic magnetorquers while the other one is an air-core

magnetorquer. These magnetorquers should provide a dipole moment of 0.25Am2 in each axis. Ini-

tial studies have shown that the specifications given are feasible to be accomplished by both types of

magnetorquers [48].

The chosen momentum wheel for the ORCASat is the Hyperion RW210 with 3mNms of total mo-

mentum storage. This wheel can also be found in 1.5mNms and 6mNms variants and has flight heritage

since 2017 [68]. The momentum wheel will be used to provide a momentum bias of 3mNms along the

´b̂2 axis of the ORCASat and thus helping to stabilize the CubeSat in the orbital plane. The wheel’s

rotation rate at nominal speed is 15000rpm and it is capable of a maximum torque of 0.1mNm.

6.2.2 Hardware Models

While the true sun vector, the geomagnetic field, and the angular rates resolved in the body frame

are computed in the Spacecraft Mechanics Simulator block, the simulated real output from the sun

sensors, magnetometers, and gyroscopes are computed in the Sensor Model block using hardware

models. Similarly, the real limitations of the actuators are simulated in the Actuator Model block. The

hardware models follow from [49].

Figure 6.1 depicts the sun sensor’s hardware model. The input of the sun sensor model is the unit

atan2
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Figure 6.1: Matlab/Simulink sun sensor model.
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sun vector computed in body frame coordinates by the Spacecraft Mechanics Simulator block. This unit

vector is then transformed into the local sun sensor frame by using the appropriate rotation matrix and

then it is converted into the two angles that define the sun vector orientation with respect to the normal

of the sun sensor’s face. This last transformation is given by

x “
1

a

1` tan2pθq ` tan2pφq
y “

tanpθq
a

1` tan2pθq ` tan2pφq
z “

tanpφq
a

1` tan2pθq ` tan2pφq
(6.1)

where the Cartesian coordinates x, y, z, and the angles θ and φ are defined according to Figure 6.2.

Figure 6.2: Sun sensor axes.

Both angles are corrupted by a zero-mean Gaussian white noise process. Similarly to the gyroscope and

magnetometer models, the sun sensor is a digital sensor and thus it is subjected to quantization error.

This quantization error is simulated using the sensitivity, saturation, data type conversion, and scale

conversion blocks. The sensitivity block is responsible for converting the angle readings into unitless

integer counts which are the data effectively measured and stored by the digital sensor and that depend

on the number of bits of the Analog-to-Digital Converter (ADC) used to represent the analog value. The

counts are then converted back to radians and transformed back to cartesian coordinates in the sun

sensor frame. The input is then transformed back into the CubeSat body frame coordinate system. A

switching logic was employed to detect if the sensor is illuminated by the sun or not. This switching logic

is determined by the Lit flag introduced in Section 6.1 and by the angle between the sun vector and

the normal to the sun sensor’s face, the x-axis from Figure 6.2. If the Lit flag is zero, meaning that the

satellite is in eclipse, or the angle between the normal to the sun sensor’s face (x-axis from Figure 6.2)

and the sun vector is bigger than half of the sensor’s field of view, or both of the previous conditions

simultaneously, the output of the sensor is a vector of zeros, else the output of the sun sensor is the

perturbed sun vector. Lastly, the signal is sampled using a zero-order hold block. Since the ORCASat

has four sun sensors, four block systems like the one in Figure 6.1 were implemented. Each one of

these blocks uses different values for the panel coordinates and for the DCM. The different white noise

generator blocks (Figure 6.1) should use different seeds. If the same seeds are used, the noise of each

component θ and φ is not independent of each other. The seeds from the other white noise generator

blocks present in the Simulink environment should also be different from each other for the same reason.

The magnetometer model is shown in Figure 6.3. The input of this model is the geomagnetic field
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computed in the body frameB by the SMS block. This input is first subjected to scale factor and misalign-

ment errors and after it is corrupted by white noise and static bias. The Three-Axis Magnetometer (TAM)

used in the ORCASat is a digital sensor and thus it is also subjected to quantization errors. Lastly, a

zero-order hold block was added to simulate the sampling frequency of the sensor.

Noise

1
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&	Alignment	Errors
SaturationSensitivity	

(T	to	counts)
Data	Type	Conversion Scale	conversion

(counts	to	T)

1
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Data	Type	Conversion1

Static	Bias

Sampling

Figure 6.3: Matlab/Simulink magnetometer model.

The gyroscope model is detailed in Figure 6.4. The input of this model is the angular rate of the body

frame with respect to the inertial frame given in body frame coordinates by the SMS block. Similarly to the

magnetometer, the gyroscope is subjected to scale factor and misalignment errors being then corrupted

by static bias and by noise. The gyroscope is affected by two different noise sources, the ARW and

the RRW. The ARW and RRW noise parameters are multiplied by 1{
?

∆t, where ∆t is the sampling

rate of the gyroscope, giving the standard deviation driving the respective noise blocks responsible for

computing a normally distributed random number with zero mean and unit standard deviation. Similarly

to the other sensors, the gyroscope is also subjected to quantization errors. Finally, the input is sampled

using the zero-order hold block according to the sampling rate of the sensor.
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Figure 6.4: Matlab/Simulink gyroscope model.

The uncertainties associated with the GNSS receiver are not modelled in this work since they are

typically very small. For instance, the accuracy of the selected GNSS receiver in Single Point L1 is 1.5m

RMS according to the product sheet [69]. The magnetorquers were assumed to respond instantaneously

and as previously said they are constrained to a maximum dipole moment of 0.25Am2 in each direction

of the body axes which is enforced by using a saturation block. The momentum wheel is modelled using

an integration block with saturation which is fed by the desired angular acceleration. The integration

stops once the wheel achieves its nominal angular rate. Disturbance forces due to static and dynamic

imbalance were not modelled. The torque produced by the wheel in frame B is given by Equation (3.30).

The values for the number of bits of the ADC of the sun sensor and for its sensitivity were not included

in the datasheet. Similarly, the values for the scale factor and misalignment matrix and for the static bias
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of both the magnetometer and the gyro plus the noise level of the magnetometer and the ARW and RRW

of the gyro were not included in their datasheet. Representative values for the missing model parameters

were taken from reference [49]. The values used for the different parameters of the hardware models

are compiled in Appendix B.

6.3 ADCS Environment

The ADCS environment is composed by the Attitude Estimator block, by the Attitude Controller block

and by the onboard Orbital Propagator block. The Attitude Estimator block is fed by the onboard Orbital

Propagator and by the Sensor Model block. It is in this block where the different estimation algorithms

from Chapter 4 are implemented. The four different sun vectors coming from the Sensor Model block are

fused together by averaging the sun vectors of the different sun sensors that provide data in each time

instant. The Attitude Controller block, in turn, is fed by the onboard Orbital Propagator and by the Atti-

tude Estimator block. It is in the Attitude Controller block were the selected nadir pointing controller (see

Section 7.2.2) and detumbling controller are implemented. This block is also responsible for computing

the quaternion error qe ” qBO by implementing Equation (5.1) and the error angular velocity ~ωe ” ~ω
B{O
B

by implementing Equations (5.2) and (5.3). The dipole moment generated from the Attitude Controller

block is then fed into the Actuator Model block, which is responsible for computing the controller torques

acting on the satellite. The onboard Orbital Propagator consists of a modified version of the SMS block

and it will be responsible for feeding the Attitude Estimator block and the Attitude Controller block as

stated before, and for estimating the orbit of the satellite. Unlike the SMS block, in the onboard Or-

bital Propagator, the torques produced by the environmental disturbances are not computed. Under the

onboard Orbital Propagator, in the block used to compute the geomagnetic field model, a zero-mean

Gaussian white noise vector with a standard deviation of 165nT was added to simulate the uncertainties

from the WMM. The value of the standard deviation was taken from [58]. This noise block should, how-

ever, be removed when compiling the code for the actual ADCS board. The fact that the onboard Orbital

Propagator uses the estimated attitude quaternion from the Attitude Estimator block makes it diverge

with time from the actual orbital position. This block includes a resettable orbit integrator responsible for

resetting the propagated orbital position, velocity and time once a new reading from the GNSS receiver

is obtained. During the simulations, this reading (orbital position and velocity) comes directly from the

SMS block and it is updated every 24h of simulation run-time. The onboard Orbital Propagator will be

initialized in two stages. The first stage is responsible for the environmental models (gravity, atmospheric

density, geomagnetic field and the sun vector) while the second stage is responsible for computing the

perturbation forces due to atmospheric drag and solar radiation pressure. The requirement of the two

stages stems from the fact that the perturbation forces due to atmospheric drag and solar radiation pres-

sure require the knowledge of the estimated attitude quaternion. The ADCS environment also includes

a block where the operation routine of the ADCS and its state transitions were implemented, the ADCS

Controller block. This block should be compiled to C and implemented in the ORCASat’s On-Board

Computer (OBC). The operation of this block is explained in Appendix C.
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Chapter 7

Simulations Results

In this chapter, the different components of the ADCS will be tested and discussed using the Simulink

model of the satellite. All the simulations were performed using the eighth-order Dormand-Prince RK8(7)

solver with a fixed time-step of 0.1s. The general simulation parameters used are shown in Table 7.1. The

value set for CD was chosen according to similar CubeSat projects, such as the AAUSAT project [45] and

the CubeSTAR project [70]. Reference [11] also proposes the same value of CD. As stated before, the

ORCASat was modeled as a set of 6 plates. The faces normal to ˘b̂1 (Fig. 2.2) have dimensions 10cmˆ

10cm, while the other faces have dimensions of 20cmˆ 10cm. The absorption coefficient of the different

panels was assumed to be equal to 1 (σiabs “ 1) since most of the CubeSat’s surface is covered with solar

cells. The value selected for the parasitic dipole moment was chosen according to the value measured

for the 3U Space Dart CubeSat in reference [71]. All results obtained for steady-state were calculated

using simulations with a run-time of 24h to ensure that unfavorable geomagnetic field geometry does

not cause a problem at some point, as stated in [9]. In the simulations performed, the magnetometer

operates simultaneously with the magnetorquers. This is a simplification and cannot be done in the

real CubeSat since the magnetorquers will corrupt the magnetometer readings. In the real CubeSat, the

magnetorquers should operate in the first third of each ADCS cycle while the magnetometer should work

in the last third of each cycle, as suggested in talks with Alfred Ng, Deputy Director at CSA. Preliminary

simulations using this architecture showed little performance degradation.

Table 7.1: General simulation parameters.

Parameters Symbol Value Unit

Epoch - 12:00:00 15/09/2019 UTC
Initial Position in ECI coordinates ~rI p´4123.9936;´2987.4334;´4463.0619q km
Initial Velocity in ECI coordinates ~vI p6.026;´3.455;´3.263q km{s
Orbital period Torb 5549.7 s
Mass of the satellite m 3.6 kg
Satellite inertia matrix in frame B JB diag

`

0.003 0.007 0.008
˘

kgm2

Drag coefficient CD 2 -
Parasitic dipole moment in frame B ~mB p0.00707; 0; 0.00707q Am2

Position of the centroid in frame B ~cB p´4;´2;´2q cm
Solar radiation pressure p@ 4.5ˆ 10´6 Pa
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7.1 Detumbling Controller

The gain Kd of the detumbling controller was chosen according to Equation (5.48), being equal to

Kd “ 1.21ˆ 10´5kgm2 s´1

where the orbital period used was Torb “ 5549.7s, Jmin “ 0.003kgm2 and the angle ξ was chosen to be

equal to the orbit inclination i “ 51.6˝ since the orbital insertion is an uncertainty and thus the angle ξ

can be in the interval r51.6˝ ´ 9.7˝ ; 51.6˝ ` 9.7˝ s “ r41.9˝ ; 61.3˝ s, being the value 9.7˝ the inclination of

the magnetic north. The initial angular velocity used in the different cases devised to test the detumbling

controller is

~ω0 “

”

0.907 0.907 0.907
ıJ

prad s´1q

corresponding to a magnitude of ‖~ω0‖ “ 1.57rad s´1 “ 90° s´1. Due to the difficulty in precisely de-

termine the exact inertia matrix of the satellite and in order to better evaluate the performance of the

detumbling controller, two different inertia matrices were considered, the ”true” inertia matrix and a per-

turbed inertia matrix. The new inertia matrix will be obtained in the body frame by a zyx rotation of

28˝ , ´21˝ , and 29˝ respectively. These angles were obtained randomly but selected in order to have a

relatively large difference from the true inertia matrix. The two inertia matrices are given in kgm2 by

Jnominal “

»

—

—

—

–

0.003 0 0

0 0.007 0

0 0 0.008

fi

ffi

ffi

ffi

fl

Jperturbed “

»

—

—

—

–

0.004410529 0.002021869 0.000454652

0.002021869 0.005932414 0.000258699

0.000454652 0.0002586989 0.007657058

fi

ffi

ffi

ffi

fl

The effect of the wheel momentum bias was also accounted for in testing the performance of the detum-

bling controller. In total four different cases were considered. These cases are summarized in Table 7.2.

The convergence of the detumbling controller for cases 1 and 2 is plotted in Figure 7.1 where the evo-

lution of the magnitude of the angular velocity (‖~ω‖) is shown. The time the controller took to converge

below ‖~ω‖ “ 0.03rad s´1 is shown in Table 7.3. The ‖~ω‖ “ 0.03rad s´1 threshold was considered since

both the selected controller for the satellite and the estimation algorithms were shown to be able to con-

verge below this threshold as it will be seen in Sections 7.2.3 and 7.3.2 respectively. The steady-state

behaviour of the detumbling controller for the four cases considered is shown in Figure 7.2. The mean

and maximum angular speeds for the different cases of the steady-state behaviour of the detumbling

controller are shown in Table 7.3. The simulation time is 116400s but the values and the plots referring

to the steady-state behaviour correspond only to the last 86400s “ 24h of the simulation to ensure the

proper convergence of the controller. These simulations use the complete satellite Simulink model but

without the Attitude Estimator block, i.e., the angular velocity of the ORCASat and the geomagnetic field

are fed to the detumbling controller directly from the Sensor Model block.

It is possible to see that the detumbling controller was able to decrease the angular velocity of the

satellite from ‖~ω0‖ “ 90° s´1 to ‖~ω‖ “ 0.03rad s´1 » 1.72° s´1 in about one orbit in the true inertia matrix

case, case 1. In the perturbed inertia matrix case, case 2, the convergence time was smaller. This is
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Figure 7.1: Convergence performance of the detumbling controller.
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Figure 7.2: Steady-state performance of the detumbling controller.

likely due to a random effect since in the first 3000s of the simulation the convergence was being done

at a slower rate than for the case of the true inertia matrix. The effect of the perturbed inertia matrix in

the steady-state of the detumbling controller is small but tends to decrease the mean angular speed of

the satellite. From case 1 to case 2 there’s a reduction of about 10% while from case 3 to case 4 this

reduction is just 3%. Although the 10% reduction of the mean angular speed might seem significant it

is not since this reduction has order of hundredths of degrees per second. The magnitude of this effect

is smaller when the momentum wheel is on due to the extra gyroscopic stiffness that the momentum

wheel provides. The maximum angular speeds however are larger in the cases where the perturbed

inertia matrix was used where there is an increase of about 16% from case 1 to case 2 and 9% from

case 3 to case 4. The detumbling controller was however able to maintain the angular speed bellow the

0.03rad s´1 threshold in all the cases considered especially in the cases where the momentum wheel is

on. In this case there is a reduction in the maximum angular speed of about 50% and a reduction of the

mean angular speed of about 60% when compared to the cases where the momentum wheel was off.
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Table 7.2: Detumbling simulation parame-
ters.

Case Wheel momentum (Nms) Inertia matrix

1
“

0 0 0
‰

Jnominal
2

“

0 0 0
‰

Jperturbed
3

“

0 ´0.003 0
‰

Jnominal
4

“

0 ´0.003 0
‰

Jperturbed

Table 7.3: Detumbling controller performance metrics.

Case 1 2 3 4

Mean Angular Speed (rad s´1) 0.0078 0.0070 0.0029 0.0028
Mean Angular Speed (° s´1) 0.45 0.40 0.16 0.16
Max. Angular Speed (rad s´1) 0.0221 0.0256 0.0117 0.0127
Max. Angular Speed (° s´1) 1.27 1.47 0.67 0.73
Convergence Time (s) 5693 4697 - -
Convergence Time (t{Torb) 1.03 0.85 - -

7.2 Pointing Controller Algorithms

This section is going to be used to analyse and compare the performance of the different control

algorithms. These algorithms will be tested and compared regarding their pointing accuracy and total

magnetic dipole moment produced, which is related to the power consumed. Based on the steady-state

response of the different controllers, the ORCASat nominal controller will be selected. The performance

of the selected controller will then be tested regarding its robustness to initial tumbling speeds, the ability

to converge from different initial pointing errors, the influence of the satellite’s inertial matrix uncertain-

ties, and the effect of the momentum wheel performance degradation. The controllers will be tested

using the complete satellite Simulink model, which includes environmental perturbations and the atti-

tude estimation algorithms. The attitude estimation algorithms, however, do not include the MCEKF.

The parameters used in the different estimation algorithms are displayed in Table 7.11. The simulation

time is 116400s but the values and the plots referring to the steady-state behaviour correspond only to

the last 86400s “ 24h of the simulation to ensure the proper convergence of the controllers.

7.2.1 Controllers Overview

The SMC is very sensitive to the value of the gain λ (see Section 5.1.2). By decreasing this value

one can get a more efficient controller, i.e., a controller that uses less power to control the spacecraft for

about the same level of pointing accuracy, if at the same time the proportional gain K is increased. The

λ gain, however, cannot be decreased infinitely, as explained in Section 5.1.2. If λ is to low, the controller

can’t keep itself in the sliding manifold and so any increase in the K gain won’t provide a better pointing

accuracy. For a fixed λ, increasing K beyond a certain value makes the maximum values of the pointing

error start to increase, producing a less smooth controller with increasing oscillations as K increases.

The set of gains which provided the smallest maximum error are K “ 0.005 and λ “ 0.02. The

maximum error is 3.9˝ for a total mean dipole moment of 0.030Am2. The steady-state response is shown

on Figure D.2a. It is clear that this controller respects the 10˝ maximum error constrain by a significant

margin and thus it is possible to choose a different set of gains that can have looser constraints in order

to produce less dipole moment. The new set of gains is K “ 0.015 and λ “ 0.0007. The maximum

error is 9.0˝ for a mean total dipole moment of 0, 0116Am2, which is about 2.5 times smaller than the

dipole moment used by the minimum maximum error case. The steady-state response for this set of

gains is plotted in Figure D.1a. The values obtained for the most efficient and best-performing gain for
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this controller and for the following controllers are summarized in Table 7.4.

The most efficient gain obtained for the IHC, within the 10˝ pointing requirement, used KQ “ 0.05

and produced a mean total dipole moment of 0.0106Am2 for a maximum pointing error of 9.6˝ . The

behaviour is shown in Figure D.1d. The controller gain which achieved the smallest maximum error

was determined using KQ “ 5 and produced a mean total dipole moment of 0.0202Am2, which is

approximately double the value obtained for the most efficient gain. The maximum error obtained was

3.3˝ . The steady-state behaviour is shown in Fig. D.2d. This controller, similarly to the FHC and to

the CGC, after achieving the minimum maximum error, increasing KQ won’t have a big impact in the

controller’s pointing performance, being the main consequence an increase in the dipole moment used.

In the FHC it was found that increasing the gain K used in Equation (5.41) usually tends to increase

the maximum pointing error. This effect, however, is not very significant. For instance for KQ “ 0.5, the

maximum error obtained using K “ 1, K “ 100, and K “ 1000 is 3.5˝ , 3.5˝ and 3.9˝ respectively. For

a higher value of KQ, for instance, KQ “ 7, for the same values of K as in the previous example, the

maximum error obtained was 3.4˝ , 3.7˝ , and 4.3˝ respectively. The mean pointing errors obtained using

the different values ofK have the same order up to 2 decimal points. All the results presented in this work

for the FHC were obtained using K “ 1. The most efficient gain found for the FHC, within the pointing

requirements, was determined using KQ “ 0.04 and used a mean total dipole moment of 0.0105Am2 for

a maximum pointing error of 9.3˝ . The smallest maximum pointing error was found to be 3.3˝ for a mean

total dipole moment of 0.0173Am2 using KQ “ 3. The previous values correspond to a 60% increase

in the total dipole moment for almost a 3 times smaller maximum pointing error. The behaviour of the

controller using the two different gains is represented in Figures D.1c and D.2c respectively.

The most efficient gain found for the CGC, which still met the pointing error requirements from Section

1.3, was determined using KQ “ 0.09, and achieved a maximum pointing error of 8.9˝ while using a

mean total dipole moment of 0.0103Am2. The steady-state behaviour is shown in Figure D.1b. The

smallest maximum pointing error achieved with this controller was 3.4˝ for a total dipole moment of

0.0155Am2 using KQ “ 3. The previous values represent a 50% increase in the total dipole moment for

a reduction by a factor of 2.6 of the maximum pointing error. The behaviour is shown in Figure D.2b.

Table 7.4: Performance metrics of the different nadir-pointing controllers using the most efficient and
best-performing gains.

SMC IHC FHC CGC

Most efficient gain Maximum Error (degrees) 9.0 9.6 9.3 8.9
Total Dipole Moment (Am2) 0.0116 0.0106 0.105 0.103

Best-performing gain Maximum Error (degrees) 3.9 3.3 3.3 3.4
Total Dipole Moment (Am2) 0.0300 0.0202 0.0173 0.0155

7.2.2 Controllers Comparison, Discussion and Selection

The lowest maximum error is achieved by the IHC with a value of 3.28˝ , while the FHC and CGC

achieve an error of 3.35˝ and 3.39˝ respectively. On the other hand, the IHC is the one that requires the
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most dipole moment in order to achieve its lowest maximum error, being followed by the FHC and by the

CGC. The lowest maximum error achieved using the SMC was 3.86˝ , which is greater than the values

obtained using the LQR controllers, while still using a relatively more amount of power. When using

the most efficient gains, this difference is much smaller but the LQR controllers still have an advantage

in terms of efficiency. The same conclusions can be seen by looking at Figure 7.3a, which plots the
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Figure 7.3: Pointing controllers efficiency comparison (pointing error vs mean total dipole moment).

maximum pointing error achieved versus the total dipole moment used for a variety of increasing values

of KQ (LQR) and K (SMC). It can be seen that any of the LQR controllers are more efficient than the

best cases for the SMC, i.e, the LQR controllers require less dipole moment than the SMC for the same

maximum pointing error. It can also be seen in this figure that as λ starts to decrease beyond a certain

value the evolution of the maximum error with the total dipole moment starts getting less predictable

unlike for higher values of λ. As stated before, it can thus be seen that a proper choice for the value of

λ can help to significantly increase the efficiency of the SMC, but reducing this gain beyond a certain

value can have counterproductive results. From Figure 7.3a, it is also visible that for smaller pointing

errors (less than 5˝ ) the IHC and FHC are slightly more efficient than the CGC, although this difference

vanishes when the gain further increases. For higher errors the inverse happens, the CGC can reach

the same maximum pointing error while being more energy efficient than the FHC and IHC, although

this difference is very small. Figure 7.3a also allows us to see that for higher errors, generally above

the 5˝ mark, by increasing the gain of all the different controllers, a relatively small increase of the total

dipole moment allows us to achieve a much better pointing error. For instance, in the case of the CGC,

increasing KQ can lead to an increase in the mean total dipole moment smaller than 9% while providing

a 45% reduction of the maximum pointing error when considering the maximum errors 8.9˝ and 4.9˝ .

Figure 7.3b provides some more insight into the behaviour of the different controllers. This figure

plots the mean pointing error versus the mean total dipole moment used. It is possible to see that unlike

in Figure 7.3a, the CGC is the controller which for the same amount of total dipole moment provides

the smallest error. For larger gains, the difference between the CGC and the remaining LQR controllers

vanishes. It can also be seen that the LQR controllers, once again, have an advantage in terms of

efficiency and pointing accuracy in comparison with the SMC. In all cases, the difference between the
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FHC and the IHC is negligible.

By comparing Figures 7.3a and 7.3b it is possible to see that after the SMC has reached the lowest

value of its maximum error, the maximum error starts to increase at a larger rate than the mean pointing

error with the continuous increase in gain. This shows that continuing to increase the gain K of the SMC

after a certain level increases the amplitude of the oscillations. In the LQR controllers, this effect is much

less noticeable and can even be disregarded, being this one more advantage that the LQR controllers

have with respect to the SMC.

According to the simulations performed, the proposed control algorithm for the ORCASat will be the

CGC due to its simpler implementation compared to the IHC and FHC while providing a similar level of

performance. The SMC is excluded since it has clearly worse performance. The gain chosen for the

CGC was obtained using KQ “ 0.7. The maximum error obtained for this controller is 3.8˝ and the

mean error is 2.0˝ . The mean total dipole moment used is 0.0121Am2. This gain was chosen because

it provides a low pointing error while not substantially increasing the total dipole moment. This controller

must now be tested to ensure it can achieve its nominal pointing error from different initial attitudes

(Section 7.2.3) and that it can resist to model uncertainties (Section 7.2.4).

7.2.3 Transient Behaviour of the Selected Controller

The transient behaviour of the controller will be tested in terms of the time it takes to converge to a

pointing error below the 10˝ limit error. Four different cases were devised combining two different initial

pointing error angles, 90˝ and 180˝ , about the b̂1 axis with two different initial angular velocities ~ω0.

In configurations 1 and 2 ~ω0 is representative of the angular velocity after detumbling and in cases 3

and 4 ~ω0 corresponds to a higher angular rate case. The momentum wheel is on such as the attitude

estimator. The magnetometer calibration filter is off. The vector b̂1 was selected because it presents a

challenging case for the attitude controller due to the gyroscopic stiffness provided by the momentum

wheel about this axis. The different configurations used are shown in Table 7.5. The convergence time

of the controller below the 10˝ threshold is shown in Table 7.6 while its behaviour is given by Figure 7.4.

Table 7.5: Simulation configurations for the transient analysis.

Configuration Initial error (degrees) Initial angular velocity ~ω0 (rad s´1)

1 90
“

6ˆ 10´05 0.01 3ˆ 10´05
‰

2 180
“

6ˆ 10´05 0.01 3ˆ 10´05
‰

3 90
“

0.05 0.05 ´0.05
‰

4 180
“

0.05 0.05 ´0.05
‰

Table 7.6: CGC convergence times.

Configuration Time (s) Time pt{Torbq

1 1697 0.31
2 1969 0.35
3 1055 0.19
4 1957 0.35

It is possible to verify that the controller not only was able to converge but it also converged in a

relatively small time, less than half an orbit for all the different configurations presented. The controller

was also able to overcome the initial wobbling due to the initial higher angular rates. The initial angular

velocity from configurations 3 and 4 had the unexpected result of reducing the convergence times. This

effect was significant in configuration 3, although it might just be a random effect since the reduction in

the convergence time was negligible in configuration 4 and because the convergence in configuration 1

was being done at a faster rate in the first 900s of the simulation than in configuration 3.
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Figure 7.4: Transient behaviour of the selected nadir-pointing controller for the ORCASat.

7.2.4 Robustness of the Selected Controller to Model Uncertainties

The robustness of the controller to model uncertainties will be tested using 3 different cases applied

to the steady-state response of the controller and applied to the 4 different configurations shown in

Table 7.5 for the transient behaviour. In case 1, the ORCASat principal axes of inertia will be rotated

from the body frame B defined in Section 2.1.4. This new inertia matrix is the perturbed inertia matrix

Jperturbed from Section 7.1. In case 2 the momentum wheel is going to have its momentum storage

reduced by a third of its nominal value going from 0.003Nms to 0.002Nms. Case 3 consists of using the

perturbed inertia matrix from case 1 together with the reduced wheel momentum storage from case 2.

The values used for the wheel angular momentum and for the ORCASat’s inertia matrix in each of the

cases considered are summarized in Table 7.7.

Table 7.7: Model uncertainty cases for the analysis of the ORCASat’s nadir-pointing controller.

Case Wheel angular momentum vector (Nms) Inertia matrix (kgm2)

1
“

0 ´0.003 0
‰

Jperturbed
2

“

0 ´0.002 0
‰

Jnominal
3

“

0 ´0.002 0
‰

Jperturbed

Transient Behaviour

The convergence times for the 4 different configurations used to test the transient behaviour of the

selected controller for the ORCASat under the 3 different cases from Table 7.7 are shown in Table 7.8.

The behaviour of the controller is plotted in Figure 7.5.

It is possible to verify that the controller still presents good convergence properties, in all the different

cases considered, converging in less than half an orbit in all the cases and configurations devised. By

looking at Figure 7.5 and by comparing the values from Tables 7.6 and 7.8, it is possible to see that the

perturbed inertia matrix has very little impact on the convergence times and in the overall transient be-
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haviour of the controller. The reduced wheel angular momentum has an impact on the overall transient

behaviour of the controller by reducing the amplitude of the overshoots. This can be seen better in the

smaller initial angle configurations (configurations 1 and 3) than in the high angle configurations (con-

figurations 2 and 4). In terms of convergence time its effect can be positive (configuration 1), negative

(configuration 3), or virtually none (configurations 2 and 4).

Table 7.8: Convergence times of the ORCASat’s pointing controller under the 3 model uncertainty cases.

Configuration 1 2 3 4

Case 1 2 3 1 2 3 1 2 3 1 2 3
Time (s) 1698 903 901 1967 1965 1965 1056 1675 1732 1962 1983 1987
Time (t{Torb) 0.31 0.16 0.16 0.35 0.35 0.35 0.19 0.30 0.31 0.35 0.36 0.36

0 500 1000 1500 2000 2500 3000
 Time (seconds)

0

20

40

60

80

100

120

140

160

180

 P
oi

nt
in

g 
E

rr
or

 (
de

gr
ee

s)

 
Base simulation
Perturbed inertia matrix
Perturbed momentum wheel
Perturbed inertia matrix and mom. wheel
10º error limit

(a) Detumble mode with 90˝ initial error (Config. 1).
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(b) Detumble mode with 180˝ initial error (Config. 2).
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(c) Higher angular rate with 90˝ initial error (Config. 3).
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(d) Higher angular rate with 180˝ initial error (Config. 4).

Figure 7.5: Transient behaviour of the ORCASat’s controller under the 3 model uncertainty cases.

Nominal Behaviour

The performance metrics for the nominal behaviour of the controller are expressed in Table 7.9 while

in Figure 7.6 it is shown the pointing error of the 3 last orbits of the simulation.

The nominal behaviour follows the same trend seen in the transient behaviour. The inertia matrix

uncertainty has a very small impact in the overall performance of the controller and, in this case, it even
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improved the maximum and mean pointing errors by a very small amount, less than a 1.5% reduction

of the maximum and mean values of the pointing error for case 1 relative to the base simulation and

for case 3 relative to case 2. In practical terms, this difference can be disregarded since it is of the

order of hundredths of a degree. The difference in the total dipole moment is negligible. The momentum

wheel performance degradation is the perturbation which has the most impact in the performance of

the controller, especially in the maximum error where there is an increase of 0.65˝ from base simulation

to case 2, corresponding to a 17% increase in error, and an increase of 0.64˝ from case 1 to case 3,

corresponding also to a 17% increase in error. The performance of the controller is still very good, not

reaching even half of the maximum 10˝ error limit. The mean error only increases 0.12˝ (6%) from the

base simulation to case 2 and 0.13˝ (6%) from case 1 to case 3. The increase of the mean total dipole

moment produced by the magnetorquers due to the momentum wheel performance degradation is even

smaller being less than 2% from the base simulation to case 2 and from case 1 to case 3.

Table 7.9: Performance metrics for the nominal behaviour of the ORCASat’s nadir-pointing controller.

Case Maximum Error (degrees) Mean Error (degrees) Dipole Moment (Am2)

Base simulation 3.82 1.98 0.01211
1 3.76 1.95 0.01213
2 4.47 2.10 0.01233
3 4.40 2.08 0.01232
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Figure 7.6: Effect of the model uncertainties on the nominal behaviour of the ORCASat’s nadir-pointing
controller (last 3 orbits of the simulation).

7.3 Estimation Algorithms

In this section, the performance of different algorithms responsible for determining/estimating the

attitude of the ORCASat are going to be analysed. First, the nominal performance of the MEKF will

be analysed and the impact of the MCEKF in the MEKF performance will be evaluated. Later, the
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Table 7.10: TAM bias and D matrix values used
in the simulations of the estimation algorithms.

Scenario 1 2 3 4

b1 (nT) ´610 5000 ´610 5000
b2 (nT) 258 3000 258 3000
b3 (nT) 1793 6000 1793 6000
D11 ´0.0438 0.05 ´0.0418 ´0.0418
D22 ´0.1111 0.1 ´0.1110 ´0.1110
D33 ´0.1387 0.05 ´0.1334 ´0.1334
D12 0.0002 0.05 ´0.0778 ´0.0778
D21 0.0052 0.05 0.0718 0.0718
D13 0.0161 0.05 ´0.0400 ´0.0400
D31 0.0002 0.05 ´0.0672 ´0.0672
D23 ´0.0064 0.05 ´0.0636 ´0.0636
D32 0.0000 0.05 0 0

Table 7.11: Estimator parameters.

Estimator Parameter Value

MEKF

Gyro ARW (σv) 3.493 08ˆ 10´8 rad s´1{2

Gyro RRW (σu) 2.908 88ˆ 10´5 rad s´3{2

TAM SD (σm) 1.5ˆ 10´5 T
Sun Sensor SD (σs) 0.5°

QUEST TAM SD (σmag) 0.029
Sun Sensor SD (σss) 0.008

MCEKF Measurement noise
covariance (Σ) 300I3nT

performance of the QUEST algorithm will be evaluated and compared to the performance of the MEKF.

Lastly, the convergence of the MEKF will be analysed as well as the influence that QUEST has on the

MEKF’s convergence time. The convergence properties of the MCEKF will be shown in the end.

7.3.1 Nominal Behaviour of MEKF and QUEST and the Effect of MCEKF

Four different scenarios were drawn to test the performance of the MCEKF and the performance of

the MEKF and QUEST as well as the effect that the MCEKF has on the MEKF and QUEST performance.

All the simulations use the full satellite Simulink model with some modifications in the Sensor Model block

as it will be seen further. The simulations also use the chosen controller for the ORCASat. The simulation

time is 202800s but the values and the plots referring to the steady-state behaviour correspond only to

the last 86400s “ 24h of the simulation to ensure the proper convergence of the algorithms. The 1st

scenario uses the simulated data from magnetometer sensor used in the ORCASat. The 2nd scenario

was taken from [9] and uses a larger bias and a different scale factor and misalignment matrix D. The

3rd and 4th scenarios use a different D matrix from the first two scenarios together with the bias from

the 1st scenario and the bias from the 2nd scenario respectively. This new matrix was designed to

have larger off-diagonal terms to better evaluate the impact of the non-symmetry of the D matrix in the

performance of the MCEKF. The values used for the bias vector ~b and for D in the different scenarios

are summarized in Table 7.10. The geomagnetic field generated ~Bgenptq for scenarios 2, 3 and 4 is

given by
~Bgenptq “ pI3 `Dq´1p~BBptq ` ~b` ~νptqq

where ~BBptq is the geomagnetic field given in body frame coordinates from the SMS block. The covari-

ance of the noise vector ~νptq is isotropic with a standard deviation of 50nT. This value was taken from

[9]. The values used in scenario 1 for ~b and D are given in Table 7.10 in accordance with the previous

equation. The parameters used in the different estimators are displayed in Table 7.11. The results for

the nominal behaviour of the MEKF with and without the effect of the MCEKF are plotted in Figure 7.7.

The gray bars shown in the following plots represent the orbit regions where the sun sensors provide

73



data to the estimators. Table 7.12 provides a synthesis of the results for a better understanding.
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(a) MEKF performance in scenario 1.
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(b) MEKF performance in scenario 2.
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(c) MEKF performance in scenario 3.
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(d) MEKF performance in scenario 4.

Figure 7.7: Estimation error of the MEKF with and without the inclusion of the MCEKF. The grey vertical
bars represent the orbit regions where the sun sensors provide data to the estimators.

Table 7.12: Performance metrics of the MEKF in the different scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean Estimation
Error (degrees)

MCEKF off 1.64 3.05 2.42 5.70
MCEKF on 0,21 0,18 0.65 0.67

Maximum Estimation
Error (degrees)

MCEKF off 2.90 5.11 5.11 9.67
MCEKF on 0.56 0.52 1.85 1.88

As it is possible to see, the performance of the MEKF alone, using the simulated real sensor values,

does not meet the 2˝ attitude knowledge requirement presented in Section 1.3. Although the mean

estimation error is below the 2˝ threshold, the maximum error is 2.9˝ , which is 45% higher than the limit

error. The inclusion of the MCEKF allows to achieve much better results and to meet the 2˝ requirement.

Even in the worst-case scenario, scenario 4, where the maximum estimation error using only the MEKF

is close to 10˝ , the introduction of the MCEKF has allowed it to be reduced below the 2˝ limit error.

The importance of the magnetometer calibration can be clearly seen from the results obtained. It

can also be concluded, from the results obtained, that the axes of the magnetometer should be closely
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aligned with the axes of the spacecraft due to the effect that the D matrix has in the performance of

the MCEKF and consequently in the performance of the MEKF. The effect of the D matrix is much

higher than the effect of the bias of the magnetometer in the MCEKF. This can be seen by comparing

the performance metrics of scenarios 3 and 4 when the MCEKF is on, where a 4 times increase in the

magnitude of the bias vector only leads to a 1.5% increase of the maximum estimation error. Now by

comparing scenario 2 with scenario 4, where the bias is the same, the D matrix with larger off-diagonal

elements from scenario 4 leads to an increase of the maximum error by a factor of 3.6. From Figure 7.7 it

can also be seen, as expected, that the estimation error during eclipse is larger than the estimation error

when the sun sensor measurements are available and that this difference grows with the disturbance

applied to the true geomagnetic field, highlighting once again the need for an accurate measurement of

the geomagnetic field and the introduction of the MCEKF.
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(a) QUEST performance with the MCEKF off.
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(b) QUEST performance with the MCEKF on.
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

 D
et

er
m

in
at

io
n 

E
rr

or
 (

de
gr

ee
s)

No magnetometer calibration filter
Symmetric magnetometer calibration filter

(c) Moving average of the determination error with a window size of 600 samples (60s).

Figure 7.8: Determination error of the QUEST algorithm in scenario 1. The grey vertical bars represent
the orbit regions where the sun sensors provide data to the estimators.

The performance of the QUEST algorithm in scenario 1 is shown in Figure 7.8 while Table 7.13

provides its performance metrics. On the top, Subfigures 7.8a and 7.8b plot the direct output of the
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determination error from the QUEST algorithm, while, on the bottom, Subfigure 7.8c shows the attitude

determination error filtered using a moving average with a window size of 600 samples which corre-

sponds to a 1 minute window size. Similarly to the case of the MEKF, the introduction of the MCEKF

significantly improves the accuracy of the attitude knowledge. By comparing scenario 1 from Table 7.12

with Table 7.13 it is possible to conclude that the MEKF provides better results, both with and without the

MCEKF, specially when looking at the maximum error metric. The MEKF is also able to provide attitude

knowledge during eclipse while the QUEST algorithm is not. The output attitude from the QUEST algo-

rithm is very noisy, thus the use of the moving average filter to present the determination error, while the

MEKF provides a virtually noise free reading. Even with the introduction of the magnetometer calibration

filter, the QUEST algorithm cannot satisfy the 2˝ attitude knowledge requirement, and thus it will only be

used for providing an initial attitude quaternion to initialize the MEKF as well as for sanity check.

Table 7.13: QUEST performance metrics in scenario 1 using the moving average filter.

Mean Error (degrees) Maximum Error (degrees)

MCEKF off 2.04 8.69
MCEKF on 0.81 3.79

7.3.2 Transient Behaviour of MEKF and MCEKF and the Effect of QUEST

Multiplicative Extended Kalman Filter (MEKF)

The convergence of the MEKF will be studied using four different cases. The 1st and 2nd cases will

be used to simulate a real-world scenario, where the MEKF should acquire the attitude of the ORCASat

while in detumbling mode, using the controller from Section 7.1, with the momentum wheel on. In the

3rd and 4th cases the simulation will be initialized using a higher angular velocity and no controller will

be used to damp those angular rates. These last two cases will test the ability of the MEKF to achieve

convergence while subjected to a higher angular rate. In cases 1 and 2, the angular rate has a mean

value of 0.0029rad s´1, a maximum value of 0.0129rad s´1, and a minimum value of 1.23ˆ 10´5rad s´1,

while in cases 3 and 4 the mean magnitude of the angular velocity is 0.0482rad s´1, the maximum

value is 0.0559rad s´1, and the minimum value is 0.0425rad s´1. The angular rate profiles are shown

in Figure D.3. The initial estimation error for cases 1 and 3 is 90˝ while for cases 2 and 4 is 180˝ .

These errors are prescribed about the unit vector v̂ “
”?

3{3
?

3{3
?

3{3
ıJ

for all cases. The initial

gyro bias value is
”

´0.02 ´0.02 ´0.02
ıJ

rad s´1 for all cases corresponding to an initial bias error of
”

´0.0271 ´0.0209 ´0.0321
ıJ

rad s´1 whose magnitude is more than 3 times bigger than the magni-

tude of the bias considered for the gyroscope sensor (Equation (B.3b)). The initial covariance matrix is

P0 “ blkdiag
´”

10I3 I3

ı

ˆ 10´3
¯

, where blkdiag denotes a block diagonal matrix. The evolution of the

estimation error is shown in Figure 7.9, while Table 7.14 provides a summary of the convergence times.

In can be seen that the MEKF was able to converge in all the cases presented, that higher initial

attitude errors lead to longer convergence times and that a higher initial rate also leads to longer con-

vergence times. The MEKF algorithm in spite of achieving convergence even from a high 180˝ error
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(a) Detumble mode with 90˝ initial error (Case 1).
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(b) Detumble mode with 180˝ initial error (Case 2).
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(c) Higher angular rate with 90˝ initial error (Case 3).
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(d) Higher angular rate with 180˝ initial error (Case 4).

Figure 7.9: Convergence performance of the MEKF. The grey vertical bars represent the orbit regions
where the sun sensors provide data to the estimators.

Table 7.14: MEKF convergence times.

Time to reach 2° error pt{Torbq Time to reach 2° error psq

Case MEKF MEKF+QUEST MEKF MEKF+QUEST
1 2.36 0.04 13080.8 219.9
2 4.37 0.04 24250.6 219.9
3 2.44 0 13524.4 0
4 6.06 0 33626.9 0

it can take a relatively long time to do so, up to 4.4 orbits in normal detumble conditions and up to 6

orbits in the higher angular rate case. The use of the QUEST algorithm to initialize the MEKF allows

us to reduce those convergence times to virtually no time, as seen in Table 7.14. In cases 1 and 2 the

attitude quaternion determined by QUEST and used to initialize the MEKF had a determination error of

3.63˝ while in cases 3 and 4 this error was only 0.10˝ . From Figure 7.9 it can be seen that the 2˝ limit

does not exactly correspond to the full convergence of the filter. The time that it takes for the filter to

fully converge and to enter in its nominal behaviour is larger, as seen by the intersection between the

orange and blue lines. In practice, this does not present a concern since the error is already small and

the difference between the blue and orange lines is also very small.
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Magnetometer Calibration Extended Kalman Filter (MCEKF)

The convergence of the MCEKF will be tested using the values for the magnetometer bias and

scale factor and misalignment matrix from scenarios 1 and 4 given by Table 7.10, representing a real-

world case scenario and a hypothetically worst-case scenario for the magnetometer values. These

two different sets of values will then be combined with the two different angular velocities from the

transient simulations of the MEKF which represent the detumbling mode conditions when the momen-

tum wheel is on and an initial higher angular rate case. The calibration filter is initialized with every

component of the state vector x (Equation (4.97)) set to zero and with an initial covariance matrix

P0 “ blkdiag
´”

I3 106I6

ı

ˆ 10´12
¯

. The MCEKF estimates for the bias vector are shown in Figure

7.10. Similar results are obtained for the D matrix parameters.

The MCEKF was able to converge in all the cases devised. By comparing Figure 7.10a with Figure

7.10c and Figure 7.10b with Figure 7.10d it can be seen that the time the filter takes to converge is

approximately similar independently on the set of values used for the magnetometer bias and for D.

The MCEKF takes approximately 1 orbit to converge under detumbling conditions, and approximately

0.15 orbits or 800s (» 14min) to converge under the higher angular rate conditions. Unlike the MEKF the

MCEKF appears to have a faster convergence for higher angular rates.

0 0.5 1 1.5 2 2.5 3
-6

-4

-2

0

2

4

6

B
ia

s 
(

T
)

b
1

b
2

b
3

(a) Scenario 1 values under detumbling conditions.
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(b) Scenario 1 values under higher angular rates.

0 0.5 1 1.5 2 2.5 3
-6

-4

-2

0

2

4

6

8

10

12

B
ia

s 
(

T
)

b
1

b
2

b
3

(c) Scenario 4 values under detumbling conditions.
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(d) Scenario 4 values under higher angular rates.

Figure 7.10: Convergence performance of the MCEKF - estimated magnetometer bias vector b̂.
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Chapter 8

Conclusions

8.1 Achievements

The goal of this thesis was to develop an ADCS capable of meeting the requirements outlined in

Section 1.3. To accomplish this goal, the performance of the attitude estimator was tested under different

scenarios and an algorithm for on-line calibration of the magnetometer was proposed and analyzed.

Four different attitude control algorithms were presented and their steady-state performance was tested

and compared among them. Next, based on the simulations performed, the ORCASat’s nadir-pointing

controller was selected and its performance was tested under different conditions. The performance

of the detumbling algorithm was also analyzed under different scenarios. The different performance

analyses were done using a realistic orbital simulator developed in Matlab/Simulink.

The detumbling algorithm was proven effective in reducing the angular speed of the ORCASat from

angular rates as high as 90° s´1 to less than 2° s´1 in about 1 orbit. The detumbling controller was also

proved to be capable of achieving angular rates low enough for the pointing controller and the attitude

estimator to converge to their nominal states. The momentum wheel was shown to have a positive effect

in decreasing the angular rate values under steady-state conditions, while the inertia matrix uncertainty

was shown to have very little impact in the steady and transient-state performance of the controller,

decreasing very slightly the average angular rate, while at the same time increasing its maximum value.

Next, the nominal performance of the different control algorithms was presented and a comparison

between the efficiency in steady-state conditions of the different controllers was done. It was seen that

the linear controllers provide a better performance than the SMC, not only in terms of efficiency but also

in terms of lower mean and lower maximum pointing errors. Based on the simulations performed in

steady-state conditions, the nominal controller for the ORCASat and its respective gain were selected.

The selected controller was the CGC using KQ “ 0.7. This controller was selected because it presented

a very similar performance to that of the other linear controllers while having at the same time a simpler

implementation. The maximum and mean pointing errors, and the mean total dipole moment obtained

for the selected controller and respective gain, while using the MEKF without the implementation of

the MCEKF, was 3.8˝ , 2.0˝ , and 0.0121Am2, respectively. The transient behaviour of the ORCASat’s
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controller was then tested using different initial pointing errors and angular velocities. The controller was

shown to converge in all the cases considered in less than 0.4 orbits. The ORCASat’s controller was also

tested to model uncertainties, namely the inertia matrix uncertainty and the performance degradation of

the momentum wheel. The inertia matrix uncertainty was shown to have very little impact in the steady-

state and in the transient-state performance of the controller, while the momentum wheel degradation

was responsible for an increase in the pointing error under steady-state conditions as well as for affecting

the convergence times in the transient-state. Nonetheless, the selected controller and gain were still able

to converge below the 10˝ limit in less than 0.5 orbits and to achieve a steady-state pointing error below

5˝ , while including the performance of the MEKF, thus meeting the ADCS pointing requirements.

Subsequently, the attitude estimators and the MCEKF were tested. It was shown that the perfor-

mance of the MEKF was much better than QUEST’s. Nonetheless, the QUEST algorithm will be in-

corporated in the ORCASat, since it allows the MEKF to reduce its convergence time from almost 4.4

orbits, under detumbling conditions with an initial attitude error of 180˝ , to approximately 0.04 orbits. The

performance of the MEKF alone did not meet the attitude knowledge requirement, even in the best (real)

case scenario. The introduction of the MCEKF improved considerably the performance of the MEKF by

reducing the maximum and mean estimation errors of the MEKF from 2.9˝ to 0.56˝ , and from 1.64˝ to

0.21˝ respectively, under steady-state conditions in the true case scenario. Even in a worst-case sce-

nario where the MEKF showed a maximum estimation error of almost 10˝ , the inclusion of the MCEKF

allowed the MEKF to meet the ADCS 2˝ attitude knowledge requirement. Simulations were also per-

formed to test the convergence of the MCEKF, showing that this filter benefits more from slightly higher

angular rates and that the values of the magnetometer bias and D do not have a major impact in the

convergence time of this filter. Under a true case scenario, the MCEKF took approximately 1 orbit to

converge, being this algorithm, from the ones tested, the one that takes longer to converge.

8.2 Future Work

The next step in the development of the ADCS of the ORCASat will be the conversion of the ADCS

blocks from the Simulink environment to C, and in the actual implementation of the software in the

ADCS board itself. Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) testing methodologies

should be implemented to make sure the software implemented in the ADCS board is consistent with the

Matlab/Simulink simulations, and that the software is capable of interacting with the sensors and the ac-

tuators of the ORCASat and perform as designed. In-depth simulations must be done to ensure that the

ADCS controller block introduced in Appendix C commands the ADCS states as desired. The ORCASat

uses an orbital propagator which together with the GNSS receiver propagate the orbital position. The

use of a simplified general perturbations model SGP4 or SGP8, to predict the position and velocity of

the ORCASat, together with the NORAD Two-Line Element Sets, should be considered as an alternative

to the present implementation. This solution not only does not require the use of a GNSS receiver but it

also has proven to be very robust, and implementations in C can be found online in CelesTrak’s website

[72] and in NASA’s GitHub [73].
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Appendix A

Algorithms Implementation

In this chapter, the implemented algorithm for eclipse calculation (Figure A.1), as well as the flowcharts

corresponding to the different control algorithms (Figures A.2 and A.3) and estimation filters (Figures A.4,

A.5, and A.6), are presented.

The eclipse calculation algorithm is employed to compute whether the ORCASat is in eclipse or not

by using a ray-sphere intersection method [49]. This code was implemented inside a Matlab/Simulink

block. It takes as input the Sun vector sun pos, the Earth’s radius R, and the spacecraft position vector

with respect to the Earth’s center sat pos. It returns a Boolean flag, Lit, whose value is 0 when the

spacecraft is in eclipse and 1 otherwise.

1 function [Lit] = fcn(sun pos, sat pos)
2

3 % Math for determining raý sphere intersection:
4 % http://www.lighthouse3d.com/tutorials/maths/raý spheré intersection/
5

6 R = 6378.1; % Earth's radius km
7 sat pos km = sat pos/1000; % Convertion to km
8 sv = sun pos ´ sat pos km; % Vector from the satellite to the Sun (km)
9 sv norm = sv/norm(sv); % Compute the unit Sun vector

10

11 % Project the vector from the satellite to the Earth's center onto the unit Sun
12 % vector >́ pc
13 sat earth = ´1*sat pos km;
14 dot prod = dot(sv norm, sat earth);
15 pc = dot prod/norm(sv norm)*sv norm;
16

17 % Visibility check:
18 if (dot prod ď 0) % If projection length is negative, we are in front
19 Lit=1; % of the Earth and therefore implicitly have visibility
20 else % Projection is positive therefore we may be in the dark
21 if (norm(sat earth ´ pc) > R) % Compare the distance sat earth
22 Lit = 1; % perpendicular to sv with the Earth's radius
23 else
24 Lit = 0;
25 end
26 end

Figure A.1: Matlab implementation of the eclipse calculation algorithm.
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Figure A.2: SMC flowchart.
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Figure A.3: IHC, FHC and CGC flowchart.
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Figure A.4: MCEKF flowchart.
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Figure A.5: QUEST flowchart.
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Appendix B

Hardware Model Parameters

This appendix compiles the model parameters taken from the different sensor datasheets [65, 67]

and from reference [49].

The magnetometer and gyroscope scale factors and misalignments matrix is given by

K “

»

—

—

—

–

g1 sin p90` θ1q cosφ1 g1 sin p90` θ1q sinφ1 g1 cos p90` θ1q

g2 sin p90` θ2q cos p90` φ2q g2 sin p90` θ2q sin p90` φ2q g2 cos p90` θ2q

g3 sin θ3 cosφ3 g3 sin θ3 sinφ3 g3 cos θ3

fi

ffi

ffi

ffi

fl

(B.1)

where the scale factors g1, g2, and g3 and the misalignment angles θi and φi, with i “ 1, 2, 3 are given

in Table B.1 for the magnetometer and in Equation (B.2) for the gyroscope. The static bias of the

magnetometer, ~bmag, and the static bias of the gyroscope, ~bgyro, are given in Equation (B.3). The other

parameters can be found in Table B.2 for the sun sensor, in Table B.3 for the magnetometer and in Table

B.4 for the gyroscope.

Table B.1: Magnetometer scale factors and misalignment parameters.

Sensor Scale Factors Misalignment Angles (degrees)

g1 g2 g3 θ1 θ2 θ3 φ1 φ2 φ3

Magnetometer 1.046 1.125 1.161 1.07 ´0.43 ´0.01 ´0.01 0.31 0.00

gi “ 1.00015, i “ 1, 2, 3 (B.2a)

θi “ φi “ 0.00572957795˝ , i “ 1, 2, 3 (B.2b)

~bmag “
”

´673 309 2082
ı

pnTq (B.3a)

~bgyro “
”

0.0071331 0.0008607 0.0120975
ı

prad s´1q (B.3b)
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Table B.2: Sun sensor model parameters.

Parameter Value

Field of View 110˝

Noise standard deviation 0.5˝

Sensitivity 125˝ /LSB
Analog-to-digital resolution 16bit
Sampling rate 10Hz

Table B.3: Magnetometer model parameters.

Parameter Value

Noise standard deviation 15nT
Sensitivity 14nT/LSB
Analog-to-digital resolution 16bit
Sampling rate 10Hz

Table B.4: Gyroscope model parameters.

Parameter Value

Sensitivity 8.75mdps/LSB
Analog-to-digital resolution 16bit
Sampling rate 10Hz
ARW 0.1° h´1{2

RRW 0.4323° h´3{2
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Appendix C

ADCS Controller Block

The ADCS Controller block is responsible for the proper initialization of the ADCS and for making

it to transition to nominal mode. When the ADCS is first turned on, it will start with the detumbling

controller and will keep using it until entering in nominal mode. The detumbling controller is responsible

for reducing the angular speed of the ORCASat to ‖~ω‖ ď 0.05rad s´1. This threshold value was proven

possible to be reached using the detumbling controller presented in Section 5.3, as it can be seen in

Section 7.1. Once this threshold is reached, the ADCS should activate the momentum wheel whose

angular velocity will increase linearly with time (constant torque applied to the wheel) until it reaches its

nominal value. While this procedure is done, the satellite’s angular velocity should not exceed ‖~ω‖ “

0.1rad s´1. If this angular rate is exceeded, the wheel should stop accelerating and keep its current

rotational speed until ‖~ω‖ ď 0.05rad s´1 again. This method allows for a better control of the wheel

speeding up process without destabilizing the CubeSat. The angular acceleration computed for the

CubeSat’s momentum wheel corresponds to 5rad s´2. This angular acceleration produces a torque along

the wheel axis slightly less than 10µNm, which corresponds to 10% of the maximum torque the wheel

can provide. Once the momentum wheel is at its nominal speed, the CubeSat’s angular rate should

decrease below 0.03rad s´1 (‖~ω‖ ď 0.03rad s´1) before the next initialization stage. This threshold was

selected since both the estimators (MEKF and MCEKF) and the nadir pointing controller implemented

were found to converge below this value of angular velocity, as can be seen in Chapter 7. The detumbling

controller was also found to be capable of reaching this angular rate as seen in Section 7.1. In order for

the ORCASat to acquire its attitude, it will require the current time, the orbital position, and the orbital

velocity. This data will be obtained via the GNSS receiver. The first fix of the GNSS receiver can take

up too 15min and it is one of the components which requires more power to operate. In order to avoid

the ORCASat getting the GNSS fix and then entering in eclipse, where it won’t be able to get its attitude,

it was decided that the GNSS receiver will only start if the CubeSat knows that it just left eclipse and

will enter in a sunlit area of the orbit. This step was accomplished by using a 1500s watchdog timer

which starts counting every time none of the four sun sensors detect the presence of the sun. Once the

watchdog reaches t “ 1500s, a flag is set to one, indicating that the CubeSat is in an eclipse region of

the orbit. In this way, energy is saved in the process of acquiring the attitude of the ORCASat. Once
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the ORCASat gets its first GNSS fix, the first stage of the onboard orbital propagator together with

the Attitude Estimator block will be initiated as soon as at least one of the sun sensors start providing

data. In order to ensure proper convergence of the MEKF, a 5min or 300s watchdog timer is used. This

amount of time was proven to be sufficient for the convergence of the MEKF as it can be seen in Section

7.3.2. If during this time the MEKF stops from having sun sensor data, the attitude estimator (MEKF)

will be turned off and it will restart once the sun sensors start providing data again. Once the attitude

determination is completed, the ORCASat will enter nominal mode and the controller will switch from

detumble mode to nadir pointing mode. The second stage of the orbital propagator, responsible for

computing the aerodynamic and solar radiation pressure disturbance forces, will be also switched on,

now that it has an accurate attitude reading from the Attitude Estimator block. In nominal mode, a routine

was implemented to get a new reading from the GNSS receiver every 24h in order to update the orbital

propagator with new values of position, velocity, and time. Once the MCEKF converges, which will be

assumed to be true after 1.5 orbits, a new routine will be started. This new routine will be responsible

for verifying the error between MEKF and the QUEST attitude estimations every time the sun sensors

provide data. This error should be kept under 5˝ using a moving average with a window size of 60s. If

the average error is larger than the 5˝ threshold, a flag is set to one and it should be communicated to

the ORCASat’s ground station.

Preliminary simulations showed that the sequence described successfully managed to automatically

bring the ORCASat from an arbitrary attitude and angular rate to nominal mode.
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Appendix D

Additional Figures
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(a) SMC - K “ 0.015 and λ “ 0.0007.
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(b) CGC - KQ “ 0.09.
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(c) FHC - KQ “ 0.04.
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(d) IHC - KQ “ 0.05.

Figure D.1: Performance of the nadir-pointing controllers using the gain that provides the best efficiency.
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(a) SMC - K “ 0.005 and λ “ 0.02.
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(b) CGC - KQ “ 3.
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(c) FHC - KQ “ 3.
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(d) IHC - KQ “ 5.

Figure D.2: Performance of the nadir-pointing controllers using the gain that provides the smallest max-
imum error.
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(a) Angular velocity profile in cases 1 and 2.
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(b) Angular velocity profile in cases 3 and 4.

Figure D.3: Angular velocity profiles used in the analysis of the transient behaviour of MEKF and MCEKF.
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Appendix E

Matlab Scripts

E.1 Constant Gain Controller

1 clear all % Load the simulink simulation containing
2 load('campo magnetico 200000s 10122019') % the magnetic field
3 v = [6.02605329; ´3.45486820; ´3.26308364]*10ˆ3; % Velocity vector
4 r = [́ 4.1239936011; ´2.9874334602; ´4.4630619183]*10ˆ6; % Position vector
5 mu = 3.98600442e14; % Standard gravitational parameter
6 a = mu*norm(r)/(2*mu ´ norm(r)*norm(v)ˆ2); % Semí major axis
7 T = 2*pi*aˆ(3/2)/sqrt(mu); % Orbital period
8 n orbits = floor(86400/T);
9 step = 0.1; % Simulink simulation step size

10 w0 = 2*pi/T; % Orbit angular velocity
11 len = round(T/step);
12 %% Getting the magnetic field from the simulation data
13 B = zeros(len, 3, n orbits);
14 for i=1:1:n orbits
15 B(:,:,i) = zeta o.data(1+len*(i´1):len*i,:);
16 end
17 [lines B,rows B,dim3 B] = size(B);
18 %% Average of the magnetic field per orbit
19 B avg = zeros(lines B,rows B);
20 for i=1:1:n orbits
21 B avg(:,:) = B avg(:,:) + B(:,:,i);
22 end
23 B avg = B avg/n orbits;
24 %% Spacecraft Parameters
25 J = [0.003 0 0; 0 0.007 0; 0 0 0.008]; % Inertia tensor
26 J1 = J(1,1); % Prinicpal inertia moments
27 J2 = J(2,2);
28 J3 = J(3,3);
29 h0 = 0.003; % Momentum wheel angular momentum about its the spin axis
30 kx = (J2́ J3)/J1;
31 ky = (J3́ J1)/J2;
32 kz = (J1́ J2)/J3;
33 %% System matrix A
34 A matrix = [0,0,w0*(1´kx)́ h0/J1,´2*w0*(w0*kx+h0/J1),0,0;0,0,0,0,0,0;...
35 h0/J3́ w0*(1+kz),0,0,0,0,2*w0*(w0*kź h0/J3);0.5,0,0,0,0,0;0,0.5,0,0,0,0;0,0,0.5,0,0,0];
36 %% Control Matrix B for each time step
37 bx = B avg(:,1);
38 by = B avg(:,2);
39 bz = B avg(:,3);
40 B matrix = zeros(6,3,length(B avg));
41 for i=1:1:length(B avg)
42 B matrix(:,:,i)=[(Jˆ(´1))*(1/sqrt(bx(i)*bx(i)+by(i)*by(i)+bz(i)*bz(i)))*...
43 [́ by(i)*by(i)́ bz(i)*bz(i),bx(i)*by(i),bx(i)*bz(i);bx(i)*by(i),́ bx(i)*bx(i)́ ...
44 bz(i)*bz(i),by(i)*bz(i);bx(i)*bz(i),by(i)*bz(i),́ bx(i)*bx(i)́ by(i)*by(i)];zeros(3)];
45 end
46 %% ´́ >́ Constant Gain Controller (CGC) <́ ´́
47 B cgc = zeros(6,3); % Control Matrix B for the constant gain controller
48 for i=1:1:len
49 B cgc = B cgc + B matrix(:,:,i);
50 end
51 B cgc = B cgc/len;
52 gain Q = [0.01, 0.05, 0.1]; % Q matrix
53 diag matrix = diag([10ˆ3, 10ˆ3, 10ˆ3, 1, 1, 1]);
54 Q = zeros(6,6,length(gain Q)); % Q = gain Q*diag matrix
55 for i =1:1:length(gain Q)
56 Q(:,:,i) = gain Q(i)*diag matrix;
57 end
58 n iterations = length(gain Q); % For computing the solution for each Q matrix
59 P Q = zeros(6,6,n iterations);
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60 K Q = zeros(3,6,n iterations);
61 for k=1:1:n iterations % Riccati matrix P and controller gain K >́ matlab care function
62 [P Q(:,:,k) , ,K Q(:,:,k)] = care(A matrix, B cgc, Q(:,:,k));
63 gainQ = gain Q(k);
64 Kcgc = K Q(:,:,k);
65 Pcgc = P Q(:,:,k);
66 Qcgc = Q(:,:,k);
67 % save(['K CGC ', num2str(gain Q(k)) 'Qdif2 ', num2str(k)],'Kcgc','gainQ','Pcgc','Qcgc')
68 end

E.2 Infinite Horizon Controller

1 clear all % Load the simulink simulation
2 load('campo magnetico 200000s 10122019') % containing the magnetic field
3 v = [6.02605329; ´3.45486820; ´3.26308364]*10ˆ3; % Velocity vector
4 r = [́ 4.1239936011; ´2.9874334602; ´4.4630619183]*10ˆ6; % Position vector
5 mu = 3.98600442e14; % Standard gravitational parameter
6 a = mu*norm(r)/(2*mu ´ norm(r)*norm(v)ˆ2); % Semí major axis
7 T = 2*pi*aˆ(3/2)/sqrt(mu); % Orbital period
8 n orbits = floor(120000/T);
9 step = 0.1; % Simulink simulation step size

10 w0 = 2*pi/T; % Orbit angular velocity
11 len = round(T/step);
12 t = 0:step:len*steṕ step; % Time vector ´ used for interpolation
13 t integration = len*steṕ step:́ step:0; % Integration time vector (Backwards integration)
14 %% Getting the magnetic field from the simulation data
15 B = zeros(len, 3, n orbits);
16 for i=1:1:n orbits
17 B(:,:,i) = zeta o.data(1+len*(i´1):len*i,:);
18 end
19 [lines B,rows B,dim3 B] = size(B);
20 %% Average of the magnetic field per orbit
21 B avg = zeros(lines B,rows B);
22 for i=1:1:n orbits
23 B avg(:,:) = B avg(:,:) + B(:,:,i);
24 end
25 B avg = B avg/n orbits;
26 %% Spacecraft Parameters
27 J = [0.003 0 0; 0 0.007 0; 0 0 0.008]; % Inertia tensor
28 J1 = J(1,1); % Prinicpal inertia moments
29 J2 = J(2,2);
30 J3 = J(3,3);
31 h0 = 0.003; % Momentum wheel angular momentum about its the spin axis
32 kx = (J2́ J3)/J1;
33 ky = (J3́ J1)/J2;
34 kz = (J1́ J2)/J3;
35 %% System matrix A
36 A matrix = [0,0,w0*(1´kx)́ h0/J1,´2*w0*(w0*kx+h0/J1),0,0;0,0,0,0,0,0;
37 h0/J3́ w0*(1+kz),0,0,0,0,2*w0*(w0*kź h0/J3);0.5,0,0,0,0,0;0,0.5,0,0,0,0;0,0,0.5,0,0,0];
38 %% Control Matrix B for each time step
39 bx = B avg(:,1);
40 by = B avg(:,2);
41 bz = B avg(:,3);
42 B matrix = zeros(6,3,len);
43 for i=1:1:len
44 B matrix(:,:,i) = [(Jˆ(´1))*(1/sqrt(bx(i)*bx(i)+by(i)*by(i)+bz(i)*bz(i)))*...
45 [́ by(i)*by(i)́ bz(i)*bz(i),bx(i)*by(i),bx(i)*bz(i);bx(i)*by(i),́ bx(i)*bx(i)́ ...
46 bz(i)*bz(i), by(i)*bz(i);bx(i)*bz(i),by(i)*bz(i),́ bx(i)*bx(i)́ by(i)*by(i)];zeros(3)];
47 end
48 %% ´́ >́ Infinite Horizon Controller (IHC) <́ ´́
49 gain = [0.01, 0.05, 0.1]; % Q matrix
50 diag matrix = diag([10ˆ3, 10ˆ3, 10ˆ3, 1, 1, 1]);
51 Q = zeros(6,6,length(gain));
52 for i =1:1:length(gain) % Q = gain*diag matrix
53 Q(:,:,i) = gain(i)*diag matrix;
54 end
55 B matrix(:,:,end+1) = B matrix(:,:,1); % Periodic B matrix ´ last value = first value
56 t integration = [t integration(1) + step, t integration];
57 t(end+1) = t(end)+ step;
58 len = length(B matrix);
59 P IHC new = zeros(6,6,len,length(gain));
60 K IHC new = zeros(3,6,len,length(gain));
61 B matrix ode = zeros(len,18); % Converting the B matrix to a vector (required in ode45)
62 for i=1:1:6
63 for j=1:1:3
64 B matrix ode(:,(i´1)*3+j) = B matrix(i,j,:);
65 end
66 end
67 n cicles = 15; % Maximum number of iterations
68 dif = zeros(len,36,n cicles, length(gain)); % Stores the difference between iterations
69 relative error = zeros(len,36,n cicles, length(gain));
70 for kk=1:1:length(gain) % Computed the solution for every gain defined in line 49
71 Pf = Q(:,:,kk);
72 Qaux = Q(:,:,kk);
73 gainQ = gain(kk)
74 len = length(B matrix);
75 % The value of Q entering in the ode45 function is represented by Pf ´ First Iteration
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76 [t ode, Pode] = ode45(@(t ode,P ode) myode(t,P ode,A matrix,...
77 B matrix ode,Qaux,t ode), t integration, Pf); % (Backwards integration)
78 AuxPode = Pode; % Change elements order ´ The first element now corresponds to t=0;
79 % decreases the interpolation time in the myode2 function by a factor ...

of 5
80 for i=1:1:length(Pode)
81 Pode(i,:) = AuxPode(end´(i´1),:);
82 end
83 AUX(:,:,1,kk) = AuxPode; % AUX keeps the inverse order of Pode of every iteration
84 for i=1:1:n cicles % Next iterations
85 Pf = reshape(Pode(1,:),size(eye(6))); % The first index corresponds
86 % to t=0 ´ Periodic condition, final value is equal to the first
87 [t ode2, Pode2] = ode45(@(t ode2,P ode2) myode2(t,P ode2,...
88 A matrix,B matrix ode,Qaux,t ode2,Pode), t integration, Pf);
89 Pode = Pode2;
90 AuxPode = Pode;
91 for iii=1:1:length(Pode) % Change elements order ´ same as in line 80
92 Pode(iii,:) = AuxPode(end´(iii´1),:);
93 end
94 AUX(:,:,i+1,kk) = Pode2;
95 dif(:,:,i,kk) = AUX(:,:,i,kk) ´ AUX(:,:,i+1,kk);
96 m AUX i plus 1 = max(abs(AUX(:,:,i+1,kk))); % Used to compute the relative error
97 for k=1:1:length(dif(1,:,i,kk))
98 relative error(:,k,i,kk) = abs(dif(:,k,i,kk))/m AUX i plus 1(k);
99 end

100 m = max(max(relative error(:,:,i,kk)));
101 % AuxReshape = reshape(Pode(1,:), size(eye(6)));
102 if m<0.01 % 1 per cent
103 disp(['Threshold reached',' ´ Iteration ',num2str(i),' m=', num2str(m)])
104 break
105 end
106 disp(['Threshold not reached',' ´ Iteration ', num2str(i), ' m=', num2str(m)])
107 end
108 for i=1:1:len % convert Pode to a square matrix
109 P IHC new(:,:,i,kk) = reshape(Pode(i,:), size(eye(6)));
110 end
111 for i=1:1:len % compute the controller gain matrix
112 K IHC new(:,:,i,kk) = (B matrix(:,:,i)')*P IHC new(:,:,i,kk);
113 end
114 len = len´1;
115 K IHC ext new = K IHC new(:,:,1:end´1,kk); % Periodic extention of the Controller gain
116 P IHC ext new = P IHC new(:,:,1:end´1,kk);
117 for i=1:1:2*n orbits´1
118 P IHC ext new(:,:,i*len + 1:(i+1)*len) = P IHC new(:,:,1:end´1,kk);
119 K IHC ext new(:,:,i*len + 1:(i+1)*len) = K IHC new(:,:,1:end´1,kk);
120 end
121 t ext = 0:step:(length(K IHC ext new)*steṕ step);
122 K series IHC new = timeseries(K IHC ext new, t ext);
123 % save(['K series IHC10 newMF ode', num2str(kk)], 'K series IHC new', 'Qaux', ...

'diag matrix', 'gainQ')
124 end
125 %% ode45 functions
126 function dPdt = myode(t,P,A,B matrix ode,Q,t ode)
127 B = interp1(t, B matrix ode, t ode);
128 B aux = zeros(6,3);
129 for i=1:1:6
130 for j=1:1:3
131 B aux(i,j) = B((i´1)*3+j);
132 end
133 end
134 P2 = reshape(P,size(A));
135 dPdt2 = ´P2*A ´ (A')*P2 + P2*B aux*(B aux')*P2 ´ Q;
136 dPdt = reshape(dPdt2,size(P));
137 end
138
139 function dPdt = myode2(t,P,A,B matrix ode,Q,t ode,Pode)
140 B = interp1(t, B matrix ode, t ode);
141 B aux = zeros(6,3);
142 for i=1:1:6
143 for j=1:1:3
144 B aux(i,j) = B((i´1)*3+j);
145 end
146 end
147 P2 = reshape(P,size(A));
148 Pi = interp1(t, Pode, t ode);
149 Pi = reshape(Pi,size(A));
150 K = (B aux')*Pi;
151 A = Á B aux*K;
152 dPdt2 = ´P2*A ´ (A')*P2 ´ (K')*K ´ Q;
153 dPdt = reshape(dPdt2,size(P));
154 end

E.3 Finite Horizon Controller

1 clear all % Load the simulink file
2 load('campo magnetico 200000s 10122019') % containing the magnetic field
3 v = [6.02605329; ´3.45486820; ´3.26308364]*10ˆ3; % Velocity vector
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4 r = [́ 4.1239936011; ´2.9874334602; ´4.4630619183]*10ˆ6; % Position vector
5 mu = 3.98600442e14; % Standard gravitational parameter
6 a = mu*norm(r)/(2*mu ´ norm(r)*norm(v)ˆ2); % Semí major axis
7 T = 2*pi*aˆ(3/2)/sqrt(mu); % Orbital period
8 step = 0.1; % Simulink simulation step size
9 w0 = 2*pi/T; % Orbit angular velocity

10 len = round(T/step);
11 n orbits = floor(120000/T);
12 %% Getting the magnetic field from the simulation data
13 B = zeros(len, 3, n orbits);
14 for i=1:1:n orbits
15 B(:,:,i) = zeta o.data(1+len*(i´1):len*i,:);
16 end
17 B(1,:,end+1) = zeta o.data(1+len*(n orbits+1 ´ 1),:);
18 [lines B,rows B,dim3 B] = size(B);
19 %% Spacecraft Parameters
20 J = [0.003 0 0; 0 0.007 0; 0 0 0.008]; % Inertia tensor
21 J1 = J(1,1); % Prinicpal inertia moments
22 J2 = J(2,2);
23 J3 = J(3,3);
24 h0 = 0.003; % Momentum wheel angular momentum about its the spin axis
25 kx = (J2́ J3)/J1;
26 ky = (J3́ J1)/J2;
27 kz = (J1́ J2)/J3;
28 %% System matrix A
29 A matrix = [0,0,w0*(1´kx)́ h0/J1,´2*w0*(w0*kx+h0/J1),0,0;0,0,0,0,0,0;
30 h0/J3́ w0*(1+kz),0,0,0,0,2*w0*(w0*kź h0/J3);0.5,0,0,0,0,0;0,0.5,0,0,0,0;0,0,0.5,0,0,0];
31 %% ´́ >́ Finite Horizon Controller (FHC) <́ ´́
32 gain Q = [150, 200, 250]; % Q matrix
33 diag matrix = diag([10ˆ3, 10ˆ3, 10ˆ3, 1, 1, 1]);
34 for i =1:1:length(gain Q)
35 Q(:,:,i) = gain Q(i)*diag matrix;
36 end
37 gain Pf = [2, 2.5, 3]; % Gain of Pf
38 K finite = zeros(3,6,len*n orbits);
39 P finite ode = zeros(6,6,len*n orbits);
40 t integration = len*step:́ step:0; % Integration time vector (Backwards integration)
41 t = 0:step:len*step; % Time vector ´ used for interpolation
42 for kkk = 1:1:length(Q)
43 Q aux = Q(:,:,kkk);
44 for kk=1:1:length(gain Pf)
45 for k=1:1:n orbits
46 bx = [B(:,1,k); B(1,1,k+1)];
47 by = [B(:,2,k); B(1,2,k+1)];
48 bz = [B(:,3,k); B(1,3,k+1)];
49 B matrix = zeros(6,3,len+1); % Control matrix of the system
50 for i=1:1:len+1
51 B matrix(:,:,i) = [(Jˆ(´1))*(1/sqrt(bx(i)*bx(i)+by(i)*by(i)+bz(i)*bz(i)))*...
52 [́ by(i)*by(i)́ bz(i)*bz(i),bx(i)*by(i),bx(i)*bz(i);bx(i)*by(i),́ bx(i)*bx(i)́ ...
53 bz(i)*bz(i),by(i)*bz(i);bx(i)*bz(i),by(i)*bz(i),́ bx(i)*bx(i)́ by(i)*by(i)];zeros(3)];
54 end
55 [Pf, , ] = care(A matrix, B matrix(:,:,end),Q(:,:,kkk)); % Final condition
56 Pf = gain Pf(kk)*Pf; % Final condition
57 B matrix ode = zeros((len+1),18);
58 for i=1:1:6 % Converting the B matrix to a vector (required in ode45)
59 for j=1:1:3
60 B matrix ode(:,(i´1)*3+j) = B matrix(i,j,:);
61 end
62 end
63 [t ode, Pode] = ode45(@(t ode,P ode) myode(t,P ode,A matrix,...
64 B matrix ode,Q aux,t ode), t integration, Pf); % (Backwards integration)
65 auxODE = Pode;
66 Pode = zeros(6,6,len+1); % Convert Pode to a square matrix
67 for i=1:1:len+1
68 Pode(:,:,i) = reshape(auxODE(len+1 ´ (i´1),:),size(eye(6)));
69 end
70 for i=1:1:len % Global P matrix ´ all orbits considered
71 P finite ode(:,:,i+(k´1)*len) = Pode(:,:,i);
72 end
73 for i=1:1:len % Global gain matrix
74 K finite(:,:,i+(k´1)*len) = ((B matrix(:,:,i))')*Pode(:,:,i);
75 end
76 Pf aux(:,:,k) = Pf;
77 end
78 K finite series = timeseries(K finite, 0:step:(length(K finite)*steṕ step));
79 gainPf = gain Pf(kk)
80 gainQ = gain Q(kkk)
81 save(['K series FHC', ' Pf', num2str(kk), ' Q', num2str(kkk)], ...

'K finite series', 'gainPf', 'Q aux', 'Pf aux', 'gainQ');
82 end
83 end
84 %% ode45 functions
85 function dPdt = myode(t,P,A,B matrix ode,Q,t ode)
86 B = interp1(t, B matrix ode, t ode);
87 B aux = zeros(6,3);
88 for i=1:1:6
89 for j=1:1:3
90 B aux(i,j) = B((i´1)*3+j);
91 end
92 end
93 P2 = reshape(P,size(A));
94 dPdt2 = ´P2*A ´ (A')*P2 + P2*B aux*(B aux')*P2 ´ Q;
95 dPdt = reshape(dPdt2,size(P));
96 end
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